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Abstract— Tools and other objects offer agents a range of
potential actions, commonly referred to as affordances. Each
tool is typically designed with a primary purpose in mind -like a
hammer’s function to drive nails. However, tools can also serve
purposes beyond their original design. These alternative uses
represent secondary affordances, extending the tool’s utility
beyond its primary intended function. While prior robotics
research on affordance perception and learning has primarily
focused on primary affordances, our work addresses the less-
explored area of learning secondary tool affordances from
human partners. Using the iCub robot equipped with three
cameras, we observed humans performing actions on twenty
objects using four different tools in ways that deviate from their
primary purposes. For example, the iCub observed humans
using rulers not for measuring but to push, pull, and move
objects. In this setting, we constructed a dataset by taking
pictures of objects before and after each action is executed.
To model secondary affordance learning, we trained three
neural networks (ResNet-18, ResNet-50, and ResNet-101) on
three prediction tasks using these raw images as input: (1)
identifying which tool was used to move an object, (2) predicting
the tool with additional action category information, and (3)
jointly predicting both the tool and action performed. Our
results demonstrate that deep learning architectures enable the
iCub robot to successfully predict secondary tool affordances,
thereby paving the road for human-robot collaborative object
manipulation involving complex affordances. Code and data
from this study are available at https://github.com/
BosongDing/second_affordance.

I. INTRODUCTION

Both humans and animals accomplish tasks by recognizing
the potential actions that tools make possible -these action
possibilities are known as affordances. Tasks that require tool
use can be as simple as foraging for basic survival or as
complex as creating a design for an industrial application
that includes human-robot collaboration [1], [2], [3]. While
tools are generally crafted with a primary function in mind,
they frequently possess the potential for other uses beyond
their original intent. Take a ruler as an example: its primary
use is to measure length, yet it can also serve to push or pull
an object. The first use is an example of the tool’s primary
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affordance, while the second represents one of its secondary
affordances [1].

The concept of affordance has been explored across mul-
tiple fields, such as user interface design, human-computer
interaction, and robotics. However, most of the research has
focused on recognizing and utilizing primary affordances,
especially in the field of robotics [2], [4], [5].

In this study, we address one of the less explored areas
of affordances in robotics, focusing on the ability of a robot
to learn about secondary tool functions through first-person
observation of its human partners. Specifically, we ask the
following research question: How can an iCub robot with
multiple cameras learn the secondary affordances of tools
used by human partners? To explore this, we designed an
interactive experiment to recognize secondary affordances
of tools using image data acquired from the egocentric
perspective of an iCub robot via three cameras before and
after operators act on various objects. It is important to
note that in our study, tools are used by human partners in
ways that go beyond their intended function. For example,
throwability is a primary affordance of a boomerang, but in
our experiments, a boomerang was repurposed to perform
various actions such as pushing and pulling.

We assess the ability of Convolutional Neural Networks
architectures to predict the secondary affordances of tools
across three tasks. The first task involves identifying tools
from raw images of the object captured before and after
performing an action. The second task extends this by includ-
ing information about the action being executed. Finally, the
third task aims to independently predict the tool and action
based solely on the raw images. By comparing these tasks,
we assess how well the robot can learn to predict secondary
affordances of the tools.

Our results show that the models achieve significant accu-
racy (> 90%) while predicting tools and tool-action pairs
across three tasks, thus suggesting that the ResNet-based
architectures, particularly ResNet-50, are well suited to learn
secondary affordances of objects.

This study offers the following contributions. Firstly, we
conducted one of the first studies that use the iCub robot
to understand secondary affordances in human interactions
within a real-world environment. Secondly, we deliver exten-
sive benchmarking results and demonstrate the effectiveness
of neural networks for learning secondary tool affordances.

The structure of this paper is as follows. Section II reviews
the literature on affordance learning in robotics. Section III
details the dataset specifics used in our research. The tasks
we investigate are described in Section IV. Our methods



for developing a secondary affordance learning framework
are explained in Section V. Section VI presents the results.
Section VII summarizes our conclusions and outlines poten-
tial directions for future work. Lastly, Section VIII provides
access to the online GitHub repository to reproduce our
results.

II. RELATED WORK

Tool use is an active area of research in robotics [6], [7].
Due to its broad scope, here, we review the studies on tool
affordance prediction and learning studies in robotics. We
also note that most studies in robotics focus on primary rather
than secondary affordances [2], [8], [9].

Varadarajan and Vince [10] present the extension of affor-
dance computing initiative (AfNet) to robotics applications,
AfRob, to employ vision data to recognize object affor-
dances, such as containability, rollability, grab supportability,
etc. Although the motivation of the study was framed for
social robots in a domestic environment, the authors did
not provide an application for a real robot. Chu et al. [11]
employ a manipulator with RGB-D sensor to detect and rank
objects’ multi-affordances: primary (e.g., grasping a hammer
from handle) and non-primary (e.g., grasping a hammer from
head) affordances of objects. The authors designed a convo-
lutional neural network (CNN) architecture with an RGB-
D data processing pipeline to detect affordances by labeling
each image pixel for different affordance types. Lai et al. [12]
used a deep learning architecture to determine the regions
of the different objects that are functionally the same (i.e.,
functional correspondence problem) in performing a task,
such as the body of a bottle and the front part of a shoe can be
used in a task of pounding. Here, the authors draw parallels
between the secondary affordances of the objects and func-
tional correspondence. To realize their approach, the authors
presented a dataset of RGB images for different objects with
the same affordances (i.e., actions). The CNN architecture
was adopted to detect functionally corresponding points in
images. Do et al. [13] proposed a convolutional network-
based primary affordance and object detection framework.
The results show that the implementation outperforms some
state-of-the-art models on affordance detection tasks using
RGB images from off-the-shelf datasets. The authors provide
a robotic application to offer the same approach that can be
employed on a real robot platform to perform a task that
requires grasping affordances, e.g., pouring a bottle.

Based on the studies introduced above, we conclude that
our work offers the following differences. On the one hand,
unlike existing studies that enable robots to detect object
affordances, our study employs the iCub robot to learn
human secondary affordances using visual data. On the other
hand, we achieve the results in a noisy real-world setting
where the iCub robot is physically co-located with human
partners.

III. DATASET ACQUISITION SETUP AND SPECIFICATIONS

Inthis section, we describe our procedue to collect a
dataset for learning the secondary affordances of objects

from human partners, using the iCub humanoid robot [14].
Our experimental setup consists of the upper body of

an iCub robot that has three color cameras (two Dragonfly
cameras, one in each eye, and an Intel Realsense d435i
camera, placed on the robot’s forhead). Figure 1(a) shows
a photo from one of the experiments in which a right-
handed operator uses a ruler as a tool to perform an action
that is associated with its secondary affordance, i.e. pulling
a wooden cube with a ruler. In this setting, we designed

(a) Experiment setup

(b) Objects (c) Tools

Fig. 1. The experimental setup (a), where an operator performs a pull
action on a wooden cube with a ruler as a tool, the objects (b) and tools
(c) that were employed to construct the dataset.

experiments in which the iCub robot becomes an action
observer, and four different human partners (i.e., operators)
are assigned to be action performers. To construct the dataset,
we used 20 objects of different material, color, size, shape,
etc.

As shown in Figure 1(a), the operator performs predefined
actions (namely, push, pull, left to right, and right to left) on
each object using a tool. The objects and tools (boomerang,
ruler, slingshot, and spatula) used in this experimental setup
are shown in Figure 1(b), 1(c), respectively. We note that the
operators do not perform primary affordance of the tools. For
example, see Figure 1(a), the operator did not measure the
size of an object with the ruler as a tool; instead, the ruler
was used to perform predefined actions: pulling, pushing,
moving an object from left to right, and moving an object
from right to left.

We captured images using all three cameras to record the
initial and final poses of objects before and after actions
were performed. Figure 2 shows examples of the initial and
final pose of objects manipulated with different tools, as



(a) init: Pear L2R with boomerang (b) end: Pear L2R with boomerang

(c) init: Yogurt R2L with ruler (d) end: Yogurt R2L with ruler

(e) init: Corn push with spatula (f) end: Corn push with spatula

(g) init: Ketchup pull with slingshot (h) end: Ketchup pull with slingshot

Fig. 2. Demonstration of tool-object interactions showing initial states
(left column) and resulting effects (right column) for various items using
different tools.

observed from the robot’s central camera. In the dataset, each
object was subject to an action using a specific tool, and
this process was repeated 10 times for every combination of
object, action, and tool. After the experiment, we acquired a
total of 3200 samples, each consisting of 6 color images with
a resolution of 640×480 pixels (i.e., each sample one of all
combinations of 20 objects, 4 tools, 4 actions, 10 repetitions,
and consist of initial and final pairs of images for each of
the three cameras).

We note that the robot’s role in this setting is to observe
human partners’ actions using a set of tools. However, the
results presented in this work can be used as a foundation
for employing the iCub robot in a human-robot collaboration
task where the robot actively interacts with the human partner
and performs secondary affordances on the tools.

IV. TASKS

This paper focuses on the following tasks:

A. Tool Recognition

For this task, the model is given an initial image (object
position before manipulation), a final image (object position
after manipulation), and optionally the action label used for

manipulating the object. The objective is to predict the cor-
rect tool. That is, we want the model to identify which tool
was used solely by analyzing the observed transformations
(and possibly the action label). In our experiments, we also
test a setting that removes the explicit action label from the
input (i.e., “tools no actions”), to see how the model performs
without that hint.

B. Action and Tool Recognition

In the second task, the model again receives initial and
final images to predict both the action and the tool that
caused the transition from the initial to the final state of the
object. We consider four distinct actions (push, pull, left-to-
right, right-to-left) and four possible tools (boomerang, ruler,
slingshot, spatula). Hence, the challenge is to simultaneously
identify the correct action and tool combination from 4×4 =
16 possibilities.

V. METHODS

In this section, we describe the pre-processing pipeline
that transforms our raw dataset into suitable input-output
pairs, followed by details on the network architectures used
for learning tool affordances. (Note that we provide links
to our dataset and GitHub repository for reproducibility in
Section VIII, including the scripts, trained models, hyperpa-
rameter configurations, and additional figures.)

A. Data Pre-processing

We collected data using four different tools: boomerang,
ruler, slingshot, and spatula. Together with four actions:
push, pull, left-to-right, and right-to-left. These actions were
applied to a set of 20 objects. Each data sample includes
initial and final RGB images of the object before and after
manipulation, as well as corresponding action and tool labels.
Each image was resized to 128× 128 pixels and normalized
before use. The dataset was divided into train, validation,
and test splits in a 6:2:2 ratio, ensuring the splits were based
on unique action-tool repetitions for each object to maintain
consistency.

For tool recognition with actions provided as input,
a one-hot encoding of four actions is fed into the model
together the initial and final images. For the tool recognition
without actions, the action vector is omitted. Finally, for
action and tool recognition, the model receives initial and
final images and produces two distinct predictions, one for
the action and one for the tool.

B. Network Architectures

We use ResNet [15] architectures to learn whether the
observed initial and final images (with optional action en-
coding) correspond to a particular tool or tool–action pair.
Here, we summarize two key architectural choices where C
indicates number of camera input and N denotes the network
type.

1) Baseline (3C-1N, Stacked-channels): We stack the
initial and final images from all three cameras (cen-
ter, left, right) into a single input tensor with 6 ×



Fig. 3. Schematic representation of the ResNet-50 architecture for tool-action pair prediction described in Section IV-B. The architecture uses paired
initial and final images processed through ResNet with shared weights. The feature maps from the initial and final images are concatenated and passed to
a two-headed classifier to simultaneously predict tools and actions.

3 = 18 channels (since each image is RGB). A
single ResNet50 then processes these 18-channel in-
puts to produce a final embedding. This embedding
is passed to the classification head(s) to predict tool
or tool–action classes. We note that this stacking is
a common approach to handle multiple images but
may dilute the network’s ability to focus on differences
between initial and final frames.

2) Proposed Method (1C-1N, Shared-central): We only
use the central camera view, and we do not stack the
initial and final images. Instead, a single ResNet50 is
applied twice, once to the initial image and once to the
final image, sharing the same weights. The two result-
ing embeddings are concatenated, then passed to the
final classification heads. The intuition is that shared
weights highlight changes specific to the object’s trans-
formation, rather than mixing multiple viewpoints into
a single stacked input. The architectural diagram of the
proposed method is illustrated in Figure 3.

In both methods, for the tool+action tasks, the network
has two output heads, one for tool classification and one
for action classification. In an ablation study, we also tried
a single 16-class output layer representing all tool–action
combinations, but this degraded performance compared to
splitting them into separate heads.

When only tool prediction is required, these second heads
are either removed, or they receive the action one-hot vector
directly for the “tools with actions” input.

C. Evaluation

All models are trained from scratch using cross-entropy
loss for up to 150 epochs, with a grid search over learning
rates (1×10−3, 5×10−4, 1×10−4), batch sizes (16, 32, 64,
128), and first-layer kernel sizes (3 × 3, 5 × 5, 7 × 7). We
identify the best hyperparameters via validation set accuracy

and then retrain each model with 5 different random seeds to
compute a mean test accuracy and a 95% confidence interval
(CI).

VI. RESULTS

We show a summary of the results across three tasks in
Table I: predicting tools as a 4-class classification prob-
lem, predicting tools without any action input, and jointly
predicting tools and actions using a two-headed setup with
separate 4-class outputs for tools and actions. In all cases, our

TABLE I
PERFORMANCE COMPARISON ACROSS TASKS: BASELINE (3C-1N) VS.

BEST (1C-1N)

Metric Baseline (3C-1N) Proposed (1C-1N)

Tools (%) 88.44± 1.34 94.03± 1.23
Tools, no action (%) 89.38± 2.41 94.21± 0.92
Tools+Actions (%) 80.62± 2.70 90.78± 4.18

proposed 1C-1N architecture (shared-central) consistently
outperforms the baseline 3C-1N (stacked-channels) model
across all tasks. We observe that stacking multiple camera
views introduces visual clutter, whereas focusing on a single
central camera and sharing weights between initial and
final images encourages the network to isolate and learn
meaningful changes more effectively.

A. Ablation and Comparative Study

To better understand the architectural components that in-
fluence the models’ accuracy, we conducted a comprehensive
ablation study. Specifically, we investigated the effect on
performance of (1) stacking input images versus processing
them separately, (2) weights-sharing versus keeping separate
networks for the embedding of each image (i.e., initial vs.
final, and camera views), and (3) network depth (ResNet18



(a) Tool recognition with action (b) Tool recognition without action
input

(c) ‘Tool’ output head (tool+action
prediction network)

(d) ‘Action’ output head (tool+action
prediction network)

Fig. 4. Normalized Confusion Matrices for ResNet50-based 1C-1N Architecture: (a) Tool-Only Recognition with Action Reference, (b) Tool-Only
Recognition without Action Reference, (c) Tool Recognition Output Head, and (d) Action Recognition Output Head. The visualization of these matrices
demonstrates the model’s high accuracy in different scenarios, with the action recognition component achieving near-perfect accuracy across all actions
and tool recognition showing robust performance.

vs. ResNet101) on performance. We explored the following
configurations in addition to the baseline and proposed
model:

1) Separate (3C-6N): Each of the six images (initial/final
from three cameras) is processed by its own ResNet
(no weight sharing). Embeddings are concatenated
before the final layer.

2) Shared (3C-3N): Three ResNets (one per camera)
handle initial/final images with shared weights for that
camera. Resulting embeddings are concatenated.

3) Separate-central (1C-2N): Use only the central cam-
era but separate ResNets (one for the initial image,
another for the final).

4) ResNet18 and ResNet101: We tested both shallower
and deeper backbones in the above configurations
to see if increased capacity boosts change-detection
accuracy.

Overall, these configurations can be grouped into three broad
categories. The stacked input model (3C-1N) serves as a
straightforward baseline, as it is the simplest model. The
shared-weights models (1C-1N, 3C-3N) assume that using
the same parameters for the networks embedding initial and
final images helps the network to emphasize changes be-
tween them. The separate-networks models (1C-2N, 3C-6N)
use separate networks to embed each picture (initial and final
images for each camera), thus having more parameters and
potentially able to produce more expressive representations.

As shown in Table II, the proposed shared-central (1C-
1N) architecture with a ResNet50 backbone achieves the
highest overall accuracy. Interestingly, we find that using
fewer cameras can improve performance. Adding the stereo
cameras may introduce noise or redundant context.

Weight-sharing across initial and final images also im-
proves detecting changes between frames. Architectures like
1C-1N and 3C-3N, which reuse the same weights across
input images, consistently outperform their separate-weight
counterparts. This suggests that weight-sharing helps the
model to learn differences in the scene rather than redun-

TABLE II
NETWORK ARCHITECTURES’ ACCURACY AND 95% CONFIDENCE

INTERVAL ON ACTION AND TOOL RECOGNITION TASK

Architectures ResNet18 ResNet50 ResNet101

Stacked-channels
(3C-1N) 76.68 ± 1.31 80.62 ± 2.70 79.00 ± 1.79

Separate
(3C-6N) 81.68 ± 3.35 73.90 ± 1.30 71.28 ±1.39

Shared
(3C-3N) 81.56 ± 3.54 86.09 ± 3.02 80.87 ± 1.01

Separate-central
(1C-2N) 78.06 ± 2.57 76.31 ± 5.10 72.43 ± 1.99

Shared-central
(1C-1N) 86.06 ± 2.05 90.78 ± 4.18 85.15 ± 5.24

dantly relearning the same features at each step. When
comparing backbone networks, ResNet50 offers the best
performance. It consistently outperforms both the shallower
ResNet18 and the deeper ResNet101.

We also observe that separating the final layer into two
output heads —one for tool classification and one for action
recognition- improves performance compared to a single
16-class classifier. This two-headed approach likely reduces
interference between the tasks and allows each head to
specialize more effectively.

Figure 4 (d) illustrates that action recognition is almost
trivial across all architectures, with accuracies often exceed-
ing 99%. This is likely due to strong visual cues in the
final object poses that indicate action direction—such as
whether an object was pushed, pulled, or moved from left
to right. Tool classification, on the other hand, remains more
challenging. Certain tools, like the boomerang and slingshot,
can produce visually similar outcomes, requiring the model
to pick up on subtle features such as tool curvature or
orientation.

Taken together, our results highlight the importance of
network architectural design, particularly in tasks where
visual distinctions are subtle. While action recognition seems



largely unaffected by architectural choices, tool classification
is much more sensitive, especially in scenarios where every
tool can perform every action. This overlap places a greater
demand on the model’s precision and its ability to capture
fine-grained visual cues.

VII. CONCLUSIONS

We presented a systematic exploration of ResNet-based
deep neural architectures for modeling tool–action relation-
ships in a human–robot collaboration context. We demon-
strated that these models enable the iCub humanoid robot
to learn secondary affordances of tools from human demon-
strations -specifically, by observing the position of objects
before and after manipulation.

Our proposed shared-central (1C-1N) architecture, when
combined with a ResNet50 backbone and two-headed output
design, achieved the best overall performance. This configu-
ration not only reduced noise from irrelevant views but also
focused the model’s capacity on scene transitions critical to
tool understanding.

Notably, we observed that while action classification was
largely trivial due to consistent visual cues, tool classification
required greater nuance. The uniform pairing of all tools
with all actions in our dataset created overlapping visual
outcomes, pushing the models to learn more fine-grained
representations. This finding underscores the importance of
architectural decisions in high-ambiguity settings and vali-
dates our approach of using separate output heads for multi-
task learning.

Finally, our results support the broader vision that social
robots can acquire meaningful understanding of tool use
through observation, enabling collaborative capabilities in
real-world tasks such as furniture assembly or kitchen assis-
tance. In future work, we plan to extend our system with mul-
timodal sensory inputs -including audio and proprioception-
to infer human intent and action in shared environments.

VIII. REPRODUCIBILITY OF THE STUDY

The dataset used in this study is available freely at
https://www.crossvalidate.me/datasets.
html. All code, trained model checkpoints, and detailed
hyperparameter settings are available in our public GitHub
repository: https://github.com/BosongDing/
second_affordance. This includes ablation scripts,
generated figures, and versioned dependencies, so others can
replicate our results exactly or build upon our methodology.
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