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Abstract

Many systems that are somehow characterized by a degree of disorder share

a similar structure: the energy landscape has many sample-dependent local

energy minima. When a small external perturbation is applied to the system

at low temperature, it is reasonable to expect that the dynamics will lead

the system from a minimum to another, thus displaying a random and jerky

response. The discontinuous jumps that one observes are called avalanches,

and the focus of this work is the computation of their distribution. One

of the results is indeed the development of a framework that allows the

computation of this distribution in infinite-dimensional systems that can

be described within a replica symmetry breaking ansatz. We apply the

results to one of the simplest models of structural glasses, namely dense

packings of (harmonic) soft spheres, either at jamming or at larger densities,

subject to a shear transformation that induces jumps both in the total

energy and in the shear stress of the system. We argue that, when the

shear strain is small enough, the avalanche distribution develops a power-law

behavior, whose exponent can be directly related to the functional order

parameter of the replica symmetry breaking solution. This exponent is also

related to the distribution of contact forces (or at least of the contact forces

between some of the spheres), whose asymptotic behavior is known not to

depend strongly on the spatial dimension; for this reason, we compare the

infinite-dimensional prediction with three-dimensional simulations of the

same systems and, remarkably, we find a good agreement. In the rest of the

thesis we compare our results with previous works, and we also discuss some

of the consequences that the avalanche distribution leads to, concerning the

statistical elastic properties of dense granular media.
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Abstract (french)

Beaucoup de systèmes qui ont un certain degré de désordre ont des similarités

dans leur structure: le paysage énergétique est aléatoire et il a plusieurs

minima locaux de l’énergie. Quand on ajoute une petite perturbation

externe au système à basse température, il est raisonnable d’attendre que

la dynamique conduira le système d’un minimum à l’autre, et ça donne

lieu à une réponse aléatoire et saccadée. Les sautes discontinus que l’on

observe sont appelés avalanches, et l’intérêt de ce travail est le calcul de

leur distribution. Un des résultats est en effet le développement d’un cadre

pour calculer cette distribution dans des systèmes en dimension infinie qui

peuvent être décrits avec le replica symmetry breaking. Nous appliquons les

résultats à l’un des modèles les plus simples des verres structuraux, c’est à

dire les empilements denses de sphères molles avec répulsion harmonique,

avec une déformation (shear strain) du volume comme perturbation. Nous

soutenons que, quand la déformation est suffisamment petite, une portion de

la distribution des avalanches devient une loi de puissance, dont l’exposant

peut être directement lié au paramètre d’ordre de la brisure de symétrie de

replica. Cet exposant est également lié à la distribution des forces de contact

(au moins entre certaines sphères), dont le comportement asymptotique on

sais que ne dépend pas fortement de la dimension spatiale; pour cette raison

nous comparons les prédictions de champ moyen en dimension infinie avec

des simulation du même système en dimension trois et, remarquablement,

on trouve un bon accord. Dans le reste de la thèse nous discutons aussi

les similarités avec des travaux précédents et quelques consquences que la

distribution des avalanches donne sur les propriétés élastiques de la matière

granulaire dense.
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1
Disordered systems

The object of our interest are disordered systems with glassy behavior. Glassi-

ness is a collection of phenomenological behaviors that characterize many

different systems endowed with some form of disorder. The most prominent

property is dynamical in nature, and it is an extreme slowing down of the

dynamics at low temperature. An important timescale is the relaxation time,

that is the time taken for a system to reach thermal equilibrium, or, equiva-

lently, a measure of the time taken by the system to explore the whole phase

space in an ergodic fashion; the relaxation time of glassy systems increases

several orders of magnitude as the temperature is lowered (see for instance

Figure 1.1), and it soon becomes so large that it exceeds the experimental

times. By definition, a system observed within a timescale smaller than

its relaxation time appears out of equilibrium — this can be verified, for

example, probing the fluctuation-dissipation theorem — and therefore, when

the temperature is lowered below some empirically defined glass transition

temperature Tg at which the relaxation time becomes too large to be actually

reached experimentally, the system appears to be gradually “freezing”. Below

this point the system is no longer able to sample the phase space (at least

not within reasonable times), and it is therefore no longer ergodic.
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Figure 1.1: This plot shows the extreme increase of the viscosity (several or-

ders of magnitude) as the temperature is lowered towards the glass transition

temperature Tg, for various supercooled liquids that are typical “glassform-

ers”. The viscosity η is related to the relaxation time τ via Maxwell’s relation

η = G∞τ , where G∞ is the instantaneous shear modulus specific to the liquid

[Cavagna, 2009]; although G∞ changes with the temperature, its variation

can be neglected in comparison to the variation of the relaxation time. Notice

that the temperature has been rescaled by the temperature Tg, defined as the

temperature at which the liquid has viscosity η = 1013 Poise; this rescaled

plot is called Angell plot [Angell et al., 1995].

Disordered systems are intimately related to some form of frustration; a

system is frustrated if some of its parts (whether they are particles, spins or

larger structures) feel conflicting forces or conflicting geometrical constraints.

In some systems the frustration results from a quenched disorder, that is,

each sample of the system has an intrinsic structure that is random and

different from the other samples; this is the case of spin glasses, that are

disordered magnets where some magnetic spins are quenched at random, fixed

locations in space but are free to rotate and align in different directions. The

simplest model that has been used to analytically study these magnets is the
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Edwards-Anderson model, that is a disordered Ising model in d dimensions,

with Hamiltonian

H(s; J) = −
∑

〈i,j〉

Jijsisj , (1.1)

where the sum is over the bonds 〈i, j〉 on a d-dimensional lattice, the spins {si}
are Ising spins that can be either +1 or −1, and {Jij} are Gaussian random

variables that mimic the disordered interaction between magnetic dipoles

in these magnetic systems. Since it is hard to solve the thermodynamics

of this model, the corresponding mean-field version, called the Sherrington-

Kirkpatrick model, has been introduced. In this model the couplings, rather

than belonging to a finite dimensional lattice, couple all possible pairs of spins

i–j via a random interaction Jij — whose variance, now, has to scale as N−
1
2

in order for the system to have an extensive free energy. All these models

are frustrated because there is a finite probability that any set of spins has

conflicting couplings. For instance, a triangle in the Sherrington-Kirkpatrick

model made by the spins i, j, k has, with finite probability, negative couplings

Jij , Jjk, Jki < 0; these couplings tend to align each spin in the opposite

directions with respect to its neighbors, but in a triangle this is not possible

— two spins have to be parallel!

A generalization of this model to higher order interactions is the mean-field

p-spin model, where the interactions involve all possible groups of p spins,

with random couplings {Ji1···ip}:

H(s; J) = −
∑

i1,...,ip

Ji1···ipsi1 · · · sip . (1.2)

It turns out that a slightly different version of the p-spin model (with p ≥ 3),

namely with spherical spins (not only ±1) such that
∑N

i=1 s
2
i = N , is easier

to study and is deeply connected with the physics of another class of systems:

the structural glasses [Kirkpatrick and Wolynes, 1987; Kirkpatrick and

Thirumalai, 1987a,b; Kirkpatrick et al., 1989]. Structural glasses are systems

of particles (atoms, molecules, . . . ) that interact through a pair potential.

Such systems usually display a liquid-crystal transition at some melting

temperature Tm, but in some cases it is possible to avoid the crystallization

by carefully lowering the temperature fast enough: when this happens, the

system is a metastable supercooled liquid [Debenedetti and Stillinger, 2001;

Cavagna, 2009]; it is metastable because there is always the crystal state

lying at a lower energy, but even though the crystal is somehow excluded

from the explored phase space (thus making the dynamics strictly speaking

not ergodic), the system nonetheless behaves as if it were at equilibrium

7



(e.g. the fluctuation-dissipation theorem holds true). When the temperature

is further lowered the relaxation time increases, and at some temperature

Tg it becomes so large that the supercooled liquid falls out of equilibrium

within the experimental timescale (Figure 1.1 and Figure 1.2), and it becomes

a glass. Of course, other glasses can be made with more complex liquids,

composed for example of colloidal particles or polymers. The simplest models

for structural glasses that have been studied are systems of spherical particles

interacting via Lennard-Jones forces (the pair potential between two particles

at distance r being of the form V (r) = 4ε
[(

σ
r

)12 −
(
σ
r

)6]
), or via short range

purely repulsive interactions as for hard spheres and soft spheres (these

systems will be introduced in Systems of spheres and jamming later in this

chapter. It is interesting to notice that these structural glasses have no

intrinsic, quenched disorders, but nonetheless their configurations appear

disordered and amorphous (one says that the disorder is self generated

[Charbonneau et al., 2014b]): the reason lies in the fact that such systems

are still (geometrically) frustrated, even without explicit disorder in the

Hamiltonian.

The thermodynamics of the Sherrington-Kirkpatrick model, of the p-spin

model and of systems of hard and soft spheres in infinite dimensions have

been solved analytically. The solution of all these systems involves a phase

transition; in the low temperature phase (or high density, for the systems

of spheres) the solution can be interestingly described in the framework of

the so-called replica symmetry breaking and results in a very complex energy

landscape, with the existence of a multitude of equilibrium states (more

details will be provided in the next section, Replica symmetry breaking). Such

a landscape justifies many of the phenomenological properties of glasses, but

nonetheless, the actual existence of a true thermodynamic glass transition

in finite dimensional systems is still not entirely clear. In finite dimensions,

there are two main points of view [Berthier and Biroli, 2011]: one is the

landscape scenario, or Random First-Order Transition theory [Kirkpatrick

and Thirumalai, 2012, 2014], that, inspired by the mean-field analysis, tries to

explain the glassy phenomenology as a true thermodynamic phase transition,

with a non-trivial energy landscape and an abundance of metastable states

that slow down the dynamics (although many concepts that are introduced

in mean-field models become meaningless in finite dimensions). The other is

the idea of dynamic facilitation, that does not regard the thermodynamics as

the principal reason for the glassy behavior, but rather ascribes the cause of

the slowdown to the frustration in the system, for which at low temperature

the particles’ movement are inhibited by their neighbors. There is a class of

8
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Figure 1.2: Volume of a glassformer liquid (similar plots hold for the entropy

or the enthalpy). At the melting temperature Tm the system would crystallize,

but such a transition in some cases can be avoided by cooling the liquid

fast enough. The resulting supercooled liquid is metastable and falls out of

equilibrium when the temperature is further lowered below some temperature

Tg. The liquid might fall out of equilibrium at slightly different temperatures,

depending on how the preparation protocol and on the choice of the criterion

to determine Tg. TG is the temperature of the Gardner transition that will

be introduced in Chapter 1 - Systems of spheres and jamming; below TG the

system enters the marginal glass phase.

models, known as Kinetically Constrained Models, that try to explain the

glassy behavior within the dynamic facilitation scenario: they are typically

defined as particles on some lattice, subject to dynamical rules for the allowed

moves. Of course, the two points of view are not mutually exclusive, and

they might even be describing different aspects of these complex systems.

Marginal models in between the two classes have also been studied. For

instance the models in [Newman and Moore, 1999; Spigler, 2014; Franz et al.,

2016] have a trivial thermodynamics and display glassy properties (without

any transition) due to some dynamic facilitation, but, turning on a small

perturbation a finite temperature glass transition appears, showing that the

distinction between the two points of view is thinner than what it looks like.
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1.1 Replica symmetry breaking

In this section we want to briefly introduce the concept of replica symmetry

breaking and how it arises in physical problem. A thorough explanation can

be found in [Nishimori, 2001; Castellani and Cavagna, 2005; De Dominicis

and Giardina, 2006; Mézard et al., 2008; Zamponi, 2010]. Let us consider a

spin system with a generic Hamiltonian H(s; J), where s is a configuration;

this Hamiltonian depends on some quenched disorder J — e.g. like in the

Sherrington-Kirkpatrick model — that is expressed as a random variable

with a given probability distribution. The disorder has been introduced

because different samples of this system have different structural, intrinsic

properties. In the case of a spin glass, the disorder is due to the fact that

different samples have the spins quenched in random locations, and this is

modeled with random couplings J . Then, the thermodynamics of a specific

sample, and thus of a specific realization of the random variable J , is given

by the usual free energy

fJ ≡ − lim
N→∞

1

βN
logZJ ≡ − lim

N→∞

1

βN
log
∑

s

e−βH(s;J), (1.3)

ZJ being the partition function of the sample. Of course logZJ is in general

a random variable, and the statistical properties of the system are given by

the statistical properties of fJ (say, mean and variance). Unfortunately, even

for the simplest distribution of the disorder J , we are not able to compute

easily the sample-to-sample average of logZJ , namely

f = − lim
N→∞

1

βN
logZJ = − lim

N→∞

1

βN
log
∑

s

e−βH(s;J), (1.4)

where the overline denotes averages over the disorder J . The way this

problem has been overcome is the so-called replica trick, that is the limit

logZ = lim
n→0

Zn − 1

n
= lim

n→0

logZn

n
. (1.5)

This trick is used as follows: we are usually able to compute ZnJ for integer

n, since this is actually the partition function of n non-interacting copies

(“replicas”) of the same original system, H(s1; J) + · · · + H(sn; J) — the

disorder J is the same in all the copies; then, performing some suitable

analytic continuation on n we can try to compute

f = − lim
N→∞

lim
n→0

1

βNn
(ZnJ − 1) = − lim

N→∞
lim
n→0

1

βNn
logZnJ . (1.6)

10



In general, this method can effectively be used for fully connected (mean-field)

models; in these cases we might be able to cast ZnJ as

ZnJ =
∑

s1,...,sn

e−βH(s1)−···−βH(sn) =

=
∑

s1,...,sn



∫ n∏

a,b=1

dQab δ

(
Qab −

1

N
sa · sb

)
 e−βH(s1)−···−βH(sn) ≡

≡
∫ ∏

ab

dQabe
−NA[Q;β]. (1.7)

where A[Q;β] is some functional of the matrix Qab, whose elements are the

overlaps between replica a and replica b: qab = 1
N s

a · sb. Therefore,

f ≡ − lim
N→∞

lim
n→0

1

βNn
log

∫ ∏

ab

dQabe
−NA[Q;β]. (1.8)

Of course the detailed form of the functional A[Q;β] changes from system to

system, but here we are only interested in the general approach. The integral

in (1.8) for large N is dominated by the maximum of −NA[Q;β], and thus

it can be computed via a saddle-point approximation (or Laplace method):

f ≡ − lim
n→0

1

βn
min
Q

A[Q;β]. (1.9)

The minimization is performed with respect to all n × n matrices Q, in

the limit n → 0! This is, in general, a very difficult task. What we can

do, instead, is to minimize the functional A[Q;β] with respect to matrices

belonging to a restricted subset of matrices that can be easily parametrized.

This is nothing more than a variational method to estimate the true free

energy, and in order to solve the problem exactly we “just” have to guess the

(simplest) correct form of the matrix that minimizes the functional. Parisi

[Parisi, 1979, 1980, 1983; Mézard et al., 1984a] came up with what turned out

to be the correct idea (as it would have been later proved by Talagrand for

the Sherrington-Kirkpatrick model and other systems [Talagrand, 2003]). For

many different systems (Sherrington-Kirkpatrick model, dense soft spheres,

. . . ), in the “glassy phase” (i.e. the low temperature phase or high density)

the solution predicts that the matrix Q has a very complex, hierarchical

structure, and the system is said to display replica symmetry breaking.

The following interpretation can be derived from the solution with replica

symmetry breaking. At sufficiently low temperature the Gibbs measure of

any sample is split into sample-dependent ergodic components, known as

11
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Figure 1.3: The free energy (1.9) has many local minima, in the phase with

replica symmetry breaking. The relative Gibbs measure has many pure states

that roughly correspond to these minima.

pure states (Figure 1.3), that can be thought of as the basins surrounding

the local minima of the free energy. Their statistical properties are contained

in the matrix Q that satisfies the saddle-point minimization in (1.9). To

describe the organization of the states in the phase-space we first introduce

the notion of overlap q(s1, s2) between two configurations s1, s2: this is

a co-distance that measures the similarity between two configurations; its

absolute value is normalized between 1 and 0 (for identical and maximally dif-

ferent configurations, respectively). Different definitions are used for different

systems: for instance, for a spin glass with N spins (e.g. the Sherrington-

Kirkpatrick model) it can be defined as q(s1, s2) = N−1s1 · s2; for N spheres,

q(s1, s2) = N−1
∑N

i,j=1W (|s1
i −s2

j |), where s1,2
i is the position of the i-th par-

ticle in the two configurations and W (r) is a window function that vanishes

when r is larger than some threshold and such that W (0) = 1. The specific

choice is irrelevant for what follows, since proper definitions are equivalent

[Parisi, 1998; Franz et al., 1999; Parisi and Ricci-Tersenghi, 2000; Parisi, 2002].

Then, after defining the overlap between configurations, we define the overlap

between two states α, β as the average of the overlap between configura-

tions belonging to the two states, qαβ =
∑

s1∈α,s2∈β w(s1;β)w(s2;β)q(s1, s2);

here w(s;β) is the Boltzmann weight Z−1
J exp (−βH(s; J)), and we con-

sider a configuration s belonging to a state α if it lies in its basin (or,

operatively, if a steepest descent dynamics brings the configuration to the

12



minimum of the basin, called the state’s inherent structure). Since replica

symmetry breaking corresponds to the appearance of many disjoint states,

we can use as order parameter of such a symmetry breaking the sample-

averaged probability distribution of the overlap between pairs of states,

namely P(q, β) =
∑

αγ wα(β)wγ(β)δ(q − qαγ) [Mézard et al., 2008], where

wα(β) = e−βFα∑
γ e
−βFγ is the Boltzmann weight of the state α, and {Fα} are

the states’ free energies, defined as exp(−βFα) =
∑

s∈αw(s;β). Equiva-

lently, we can consider as order parameter the so-called Parisi function

βx(q, β) = β
∫ q

0 dq̄P(q̄, β) (in the literature of replica symmetry breaking

the function x(q, β) is called the functional order parameter).

Loosely speaking, we can group the states in Figure 1.3 into clusters such

that any two states in a cluster have a mutual overlap larger than some

threshold qth, that plays the role of a coarse-graining scale; when qth is large

enough then each cluster is formed by a single state (that has maximum

overlap with itself). As the threshold is decreased, different clusters merge

together, until there is only one cluster. A simple way to view how different

clusters merge is to draw a tree with all the states as leaves (see Figure 1.4);

moving upwards along the tree corresponds to lowering qth, and when some

states are joined into the same cluster we draw a new node, until we reach

the root of the tree, that is associated with a maximal cluster containing all

the states — this cluster is found at a scale qth = qmin , that is the minimum

possible overlap between any two states. In the figure we have drawn an

example of such a process, where every state starts in the smallest possible

clusters at an overlap q3 that is defined as the self overlap qαα — this quantity

does not depend on the state α, and it is called the Edwards-Anderson order

parameter qEA. Then, we assume that at a scale q2 some states can be

grouped into distinct clusters, that eventually join at a scale q1.

The fact that we can draw such a tree implies that the clusters at each scale

qth are disjoint. This property is called ultrametricity and follows from the

properties of the matrix Q that satisfies the saddle-point condition (1.9);

an equivalent way to state it is to say that for any three states α, β, γ, the

mutual overlaps satisfy qαβ ≥ min {qαγ , qβγ}; moreover, if we assume without

loss of generality that qαβ ≤ qβγ ≤ qγα, then applying the inequality to all

possible permutations of the indices yields qαβ = qβγ ≤ qγα. This property

is manifest in Figure 1.4 if we relate the mutual overlap qαβ to the overlap

scale q1 at which the two states α, β merge into a unique cluster.

The tree built in this way is a random structure, since it depends on the states
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Figure 1.4: The states can be arranged in a hierarchical structure, where

ultrametricity is manifest.

in a specific sample, and its distribution is related to the functional order

parameter βx(q, β), that in turn can be computed from the saddle-point

matrix Q in (1.9). In principle the Parisi function could be any increasing

function; in particular, if the states can be organized in an ultrametric

structure as in Figure 1.4, we might expect it to be a step function with a

number k of steps. It turns out that in practice the models that have been

studied either have a continuous βx(q, β) (k = ∞, known as “full replica

symmetry breaking”) or k = 1 (called “1-step replica symmetry breaking”).

(There is the exception of the Derrida’s Generalized Random Energy Model

[Derrida, 1980, 1981], that can have any number k of steps, but it is somewhat

artificial). In the following we will nonetheless regard βx(q, β) as a step

function that takes discrete values 0 ≤ βx1 < · · · < βxk ≤ β on intervals

separated by the points 0 ≤ q1 < · · · < qk+1 = 1. The number k is the

number of levels of replica symmetry breaking, that is the “depth” of the tree

of clusters shown in Figure 1.4 (in the example k = 2). The numbers {qi}
are a discretization of the possible values that the mutual overlap between

two states α, β can take; for instance, when k = 1 there are only two possible

values: either qαα = q2 ≡ qEA for the self overlap, or qαβ = q1 < qEA for

α 6= β. The numbers {βxi} ≡ {βx(qi, β)} instead characterize the structure

of the tree. The details of this distribution can be found in Appendix a. The

stochastic process that describes the distribution of the tree is a branching

process: this means that, starting from a root node (the top of the tree),

the process generates a first layer of child nodes, that we identify as the

clusters at the scale q1 in Figure 1.4; the distribution according to which

are extracted the child nodes depends on a single parameter, that is βx1.
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Then, the branching process is iterated starting from each child node, thus

generating a second layer of child nodes, this time using βx2 as the only

parameter of the distribution. In the example shown in the figure (where

k = 2), we stop after reaching this second level, and the last nodes that

have been generated at the bottom of the tree are identified as the states

of the sample; for a generic k we would continue iterating the branching

process until we reach the k-th level. For a continuous Parisi function, a

suitable limit has to be taken in the end. This process allows us to compute

the distribution of the free energies of the states in a sample, and it will

be essential for computing the distribution of static avalanches in mean

field systems (see Chapter 2). Normalizing the free energies one finds the

associated Boltzmann weights, wα(β); their distribution, induced by that of

the free energies, is known as Derrida-Ruelle cascade.

1.2 Systems of spheres and jamming

Granular materials are complex systems with a rich phenomenology. Varying

the external control parameters or the internal properties, these systems can

display characteristics that are typical of either liquids or solids. Among

the simplest models that can be studied, either numerically or analytically,

are those of spherical particles with short range, repulsive interaction: these

are systems made by N d-dimensional frictionless spheres of radius R1 that

interact via a pair potential

V(r) = ε
(

1− r

2R

)α
θ
(

1− r

2R

)
, (1.10)

where r is the distance between two particles’ centers, ε > 0 is the intensity

of the repulsion and α can be tuned to different values (typically one studies

harmonic spheres with α = 2 or Hertzian spheres with α = 5
2). This

interaction is identically zero when the two particles are not overlapping

(r > 2R), and increases with the compenetration (for this reason we talk

about “soft spheres”); it is of course possible to take the limit ε → ∞,

known as the hard sphere limit: in this case the potential is V(r) = ∞
if the particles overlap (r < 2R) and 0 otherwise — that is, particles

cannot overlap. Notice that hard spheres behave similarly to soft spheres

at zero temperature, and are athermal systems, in the sense that their

thermodynamics is the same at any temperature: βV is independent of β,

1In d = 2 the system tends to crystalize very easily at high densities, and it is thus not

useful for studying disordered packings. Nonetheless, as one introduces some polydispersity

(i.e. particles with different radii) the crystallization can be avoided.
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Figure 1.5: Phase diagram showing the liquid, stable glass, marginal glass and

jamming phases of systems of hard spheres. Picture taken from [Charbonneau

et al., 2014b].

since the energy only takes the values 0 or ∞; the suitable control parameter

is then the pressure. The thermodynamics of systems of hard spheres has

been solved analytically in the limit of infinite spatial dimensions [Kurchan

et al., 2012, 2013; Charbonneau et al., 2014a], where they become mean field

and can be solved within the replica symmetry breaking framework. The

solution predicts the following behavior (see also Figure 1.5): at low pressure

the system is first in the equilibrium liquid phase; increasing the pressure —

and avoiding the crystallization — one reaches the metastable supercooled

liquid and the dynamics slows down, and eventually the system falls out of

equilibrium and gets stuck in the basin of one state, thus forming a glass

(in the following we will refer to this as a simple glass or stable glass). The

stable glass is described by a 1-step replica symmetry breaking ansatz, that

predicts the existence of many states (each corresponding to a different glass)

separated by large barriers. Then, it was discovered, first by Gardner in the

spherical p-spin model [Gardner, 1985], then by [Charbonneau et al., 2014b]

for hard spheres, that at an even larger pressure the glass becomes unstable

and there is another transition (the Gardner transition) (see Figure 1.2),

after which the system is described by a full (continuous) replica symmetry
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breaking ansatz. The physical meaning is that in this phase, that we will

refer to as the marginal glass, while each state’s basin remains well separated

from the others, its “bottom” breaks into a very rough, “fractal” energy

landscape with many smaller valleys separated by small energy barriers (see

Figure 1.6 for a pictorial representation). Finally, in the limit of infinite

pressure the system reaches a critical phase called jamming.

E
n
e
rg

y
E

n
e
rg

y

Figure 1.6: Representation of the free energy landscape of a glass: the picture

on the top is for a stable glass, while the one on the bottom is for the marginal

glass, after the Gardner transition. See also [Charbonneau et al., 2014b].

The concept of jamming as a unified concept in the physics of disordered

media had been introduced in [Liu and Nagel, 1998] noticing that many

different granular systems achieve mechanical stability as the density is

increased. A d-dimensional system of hard spheres jams when an infinite

pressure is applied; this point is marginally mechanically stable because it
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Figure 1.7: Average coordination number as a function of the packing fraction,

for one specific three-dimensional sample of 1000 soft spheres with harmonic

repulsion.

barely satisfies the so-called Maxwell’s condition [Van Hecke, 2009], namely

the fact that a system can be mechanically stable — no net force on any

particle — only if the number of forces (that is the number Z of pairs of

particles in contact in the systems) is larger than the number of degrees of

freedom (namely, the dN particles’ coordinates). Since the number Z can

be written as a function of the average coordination number z per particle

(that is, its average number of contacts) as Z = 1
2zN , we have that a system

is mechanically stable only if z ≥ 2d; the factor 1
2 avoids counting twice the

contacts. At jamming z = 2d, and the system is said to be isostatic [Liu et al.,

2011]. We can also study the jamming problem in systems of soft spheres,

where it is then possible to further increase the density of the packing. Of

course in these systems the jamming point is not found at infinite pressure,

but rather when the condition for marginal mechanical stability z = 2d is

met — the pressure is in fact zero for soft spheres at jamming; in Figure 1.7

we plot the average number of contacts per particle z as a function of the

packing fraction φ, defined as the total volume occupied by the particles

contained in a unit volume. For small packing fractions there are no particles

in contact and the energy is 0. As the density is increased (always allowing

the system to relax to a minimum of the energy landscape), at some point

the system jams with a sharp transition, where the coordination number z
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jumps to a finite value, approximately equal to 2d. The packing fraction

at which the system jams fluctuates (in d = 3 it is about φJ ≈ 0.64) and

it depends on the specific sample; in the thermodynamic limit when the

number of particle N tends to ∞ all the samples jam at the same packing

fraction. Upon further compression the number z increases, and close to the

jamming point one finds the scaling

z − 2d ∼
√
φ− φJ , (1.11)

(this scaling does not change varying the dimension d or the exponent α

in the interaction (1.10)) [O’Hern et al., 2003]. Notice that the Maxwell’s

condition is not strictly satisfied in finite dimensions, because there is a

finite probability that in a jammed configuration there is a “cage” formed

by jammed particles and such that on the inside there is enough space to

accommodate another particle that does not interact with its surroundings

(see Figure 1.8); these rattlers should not be counted in (1.11). In three-

dimensional configurations at jamming, approximately 1-5% of the particles

are rattlers [Atkinson et al., 2013; Charbonneau et al., 2016]; this percentage

vanishes quickly as the dimension is increased [Charbonneau et al., 2012].

Figure 1.8: A rattler in a two-dimensional configuration at jamming. The

surrounding cage is stable (jammed) and the rattler does not interact with

it. The lines represent contacts between the particles. Picture taken from

[Charbonneau et al., 2015].
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It turns out that the jamming point has critical properties that control

its neighborhood, in the sense that also other quantities show a critical

scaling when approaching this point from the denser phase (sometimes called

jammed, marginal glass or UNSAT phase), even though they might depend on

the force exponent α [O’Hern et al., 2002; Liu and Nagel, 2010]. For instance,

the pressure above jamming scales as p ∼ φ − φJ for harmonic spheres

(α = 2) and as p ∼ (φ−φJ)1.5 for Hertzian spheres (α = 5
2), regardless of the

dimension; in general the scaling is consistent with saying that p ∼ (φ−φJ)ψ

with ψ = α − 1. A critical behavior is also found in the pair correlation

function and in the distribution of the contact forces between neighboring

particles. The “gap” hij between two particles at ri, rj is their distances

minus the particles’ diameter, hij ≡
∣∣ri − rj

∣∣− 2R. The distribution g(h) of

the gaps is related to the pair correlation function g̃(r) = g(h+ 2R), and it

behaves as a power law for small gaps:

g(h) ∼ h−γ . (1.12)

Similarly, the force distribution has a pseudo-gap at small forces, that is

P (f) ∼ fθ. (1.13)

The two exponents γ and θ are predicted by the mean-field theory (that is,

in infinite dimensions), where their value is γ ≈ 0.41269 and θ ≈ 0.42311.

The measured value for γ in finite dimensions (d ≥ 2) has been found to be

compatible with this value [Charbonneau et al., 2012]. The distribution of

forces on the other hand is a little trickier, because different exponents have

been measured in finite dimensions. It turns out that there are two classes

of contacts, according to whether the breaking/opening of the contact gives

rise to an extended or localized rearrangement of particles; the distribution

of forces restricted to forces belonging to any of the two groups also has a

power-law behavior for small forces, and one finds different exponents in

the two cases: “localized” forces have an exponent θl ≈ 0.17 and “extended”

forces have an exponent θe ≈ 0.42 (regardless of the spatial dimension) [Char-

bonneau et al., 2015]. The particles that are involved in local rearrangements

are called bucklers, and their number decreases with the spatial dimension; for

this reason one finds that the exponent in the total distribution of the forces

interpolates between the two exponents θl,e, tending to θe when d→∞. In

[Wyart, 2012; Lerner et al., 2013; Müller and Wyart, 2015] it has been shown

that mechanical stability, or rather the fact that the jammed system of hard

spheres cannot be further compressed, implies two bounds on the exponents,

namely that γ ≥ 1−θl
2 and γ ≥ 1

2+θe
; quite remarkably the predicted and
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measured data satisfy these bounds, but only marginally, in the sense that

γ(≈ 0.413) ≈ 1−θl
2 (≈ 0.415) ≈ 1

2+θe
(≈ 0.413) assume almost the same value.

In their analysis the authors also argue that the rearrangements found in

these systems when some temperature is introduced or when the system is

sheared will typically be extended, and thus the relevant exponent should be

the force exponent θe. In the following chapter we are going to study the

response of systems of soft spheres under shear strain, and we are going to

argue that the distribution of the avalanches induced by the rearrangements

at jamming are indeed governed by a power law with an exponent strictly

related to θe.
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2
Athermal response to perturbations

In Chapter 1 we have described the qualitative structure of the phase space

of disordered systems. This chapter is devoted to the description of the

behavior of these systems, and in particular of their ground state, when an

external perturbation is introduced. The chapter is organized as follows:

in the next section (Avalanches) we define the the quantities that we are

interested in, namely the (static) avalanches. In the section Spheres and

shear-strain we present the systems that we focus on, that are dense systems

of harmonic soft spheres, whose confining box is subject to a small shear

strain. Next we proceed with a discussion on the probability distribution of

the avalanches, summarizing the mean-field framework that allows its compu-

tation in infinite-dimensional systems, shown in details in Appendix b. In the

end we compare these analytic mean-field results (in Asymptotic behavior)

with three-dimensional numerical simulations (in Numerical simulations).

2.1 Avalanches

Disordered systems have complex rugged free-energy landscapes, with many

sample-dependent local minima, as shown schematically in Figure 2.1 — the
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picture shows the free energy of the configurations, for instance through a

“section” of the phase space. When we introduce a small perturbation, the

energy of each configuration is shifted by some amount that depends on the

configuration itself: for instance when a magnetic system is embedded into

a magnetic field h, the energy of any spin configuration {si} is shifted by

h ·∑i si. In general we may want to study the effects of some perturbation

with different protocols or different evolution dynamics. For instance, the

perturbation can be increased constantly at a finite rate, while the system

undergoes some dynamics; as a limiting case we can study a perturbation

with a vanishingly small rate, such that the system has time to equilibrate

in an almost constant field. At zero temperature the latter is equivalent to

saying that the system always lies in its instantaneous ground state, namely

the configuration that reaches the global energy minimum. Of course, the

response is in general sensitive to the details of the protocol, and for the

moment we are going to focus on the limiting case at zero temperature, with

a perturbation that is increased instantly and in a stepwise fashion: we will

refer to this as the athermal quasi-static protocol.

When the perturbation is small enough, we might expect that no state (i.e.

the valleys in Figure 2.1) disappears or is created, and that the only effect is a

small, state-dependent shift of their energies (red arrows in the same picture).

Of course, also the energy of the barriers in between valleys is modified,

but in the framework of the athermal quasi-static protocol the barriers are

irrelevant, since we are only looking for the true, absolute ground state of

the system. If the intensity of the perturbation is increased step by step and

always in a quasi-static fashion and at zero temperature, the system jumps

from a state to another as soon as the latter has a lower total energy (namely

the unperturbed energy plus the energy shift). The jumps happen at random

times because the energy landscape is random and sample-dependent, and

in general the new ground state can be in a configuration very different from

the previous one. For these reasons, the response of many disordered systems

(such as spin glasses, structural glasses, elastic interfaces. . . ) is random and

usually proceeds by discontinuous jumps ([Young et al., 1984; Young and

Kirkpatrick, 1982; Franz and Parisi, 2000; Combe and Roux, 2000; Sethna

et al., 2001; Krzakala and Martin, 2002; Rizzo and Yoshino, 2006; Yoshino

and Rizzo, 2008; Rosso et al., 2009; Yan et al., 2015; Müller and Wyart, 2015;

Jesi, 2015]), called static avalanches (“static” refers to the fact that we are

always in the instantaneous ground state).
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Figure 2.1: A simplified picture of the rugged free-energy landscape of a

disordered system — along the horizontal axis there are the configurations.

The valleys represent different phases of the system, and the ground state (gs)

is the global minimum. When a small perturbation is turned on, the energy

of the minima will be shifted by some configuration-dependent amount, and

it might happen that the new global minimum (α) is no longer the previous

ground state (gs).

Since avalanches are random objects, we want to know what is their distri-

bution, averaged over several jumps and several samples. In some disordered

systems one finds a power-law behavior for the distribution of jumps; for

instance, in [Le Doussal et al., 2012] the authors find a power law in the

density of magnetization jumps in spin glasses (with full replica symmetry

breaking), in [Combe and Roux, 2000] a different power law is found for

strain jumps in systems of hard spheres under shear-stress, and in [Liu et al.,

2016] similar results are found for systems of spheres in the elasto-plastic

phase (at a large shear strain), for different perturbation rates. Interestingly,

often the same power-law exponent is found using different perturbation

protocols ([Le Doussal and Wiese, 2009; Le Doussal et al., 2012; Liu et al.,

2016]); indeed, it has been conjectured that the various responses in some of

these disordered systems might lie in the same universality class, regardless

of the dynamics [Liu and Dahmen, 2009].
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2.2 Spheres and shear-strain

Our motivation to re-examine this problem in a general framework comes from

the physics of soft spheres, in particular the jamming transition introduced

in Chapter 1 [Liu and Nagel, 1998; O’Hern et al., 2003; Biroli, 2007; Parisi

and Zamponi, 2010; Charbonneau et al., 2012; DeGiuli et al., 2014]. This

type of system is among the simplest models for liquids (and glassformers): it

is made of N identical spherical particles of radius R, in dimension d > 2; two

particles at a distance r (from center to center) interact via a pair potential

V(r) =
(

1− r

2R

)2
θ
(

1− r

2R

)
, (2.1)

that is, they repel elastically when in contact (r < 2R) and do not in-

teract when far away. The energy of the system is therefore H({ri}) =∑
i 6=j V

(∣∣∣∣ri − rj
∣∣∣∣). The particles’ radius R is chosen in such a way that the

total volume occupied by the particles in a unit box is a fixed value (the

packing fraction) φ: N ΩdR
d ≡ φ, where Ωd is the volume of a sphere with

unit radius in dimension d.

Figure 2.2: Shear transformation applied to a box of soft spheres. Each

particle with coordinates (x1, x2, . . . ) is translated to (x1 + γx2, x2, . . . ).

We want to study the static avalanches induced by a shear strain applied

quasi-statically to the packing of spheres. A shear strain is a deformation

of the system: in the quasi-static framework, applying a finite strain γ

means that each particle, say with coordinates (x1, x2, . . . , xd) — in arbitrary

dimension d — is shifted to (x1 + γx2, x2, . . . , xd), i.e. the first coordinate is
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translated by γ times the second coordinate, or equivalently the system is

tilted in the x1-x2 plane as shown in Figure 2.2. Keep in mind that in the

thermodynamic limit, the free-energy of these systems does not depend on

the shape of the container, and thus it cannot depend on the shear, whatever

are the boundary conditions [Yoshino and Mézard, 2010]. Nonetheless the

response of the system is well defined even in that limit, and the reason is

that the limits N → ∞ and γ → 0 do not commute — the same happens

every time there is some symmetry breaking. For small shear strain γ,

the energy H({ri}; γ) can be expanded in a Taylor series and it becomes

H({ri})− γΣ({ri}), where H({ri}) is the unperturbed energy and Σ({ri})
is the shear stress of the configuration {r}, that is equal to

Σ({ri}) ≡ −
1

2

∑

i 6=j
V ′(
∣∣∣∣ri − rj

∣∣∣∣)
∣∣∣∣ri − rj

∣∣∣∣−1
(ri − rj)1 (ri − rj)2 =

=
1

2

∑

i 6=j
(ri − rj)1 Fij,2, (2.2)

The subscripts 1, 2 stand for the spatial directions along the axis x1, x2,

Fij,2 is the second component of the force between particles i and j and

(ri−rj)1 ≡ xi,1−xj,1 is the first component of the displacement vector between

the two particles. This shear stress is actually a part of the symmetric stress

tensor, whose components Σαβ({ri}) (α, β = 1, . . . , d) are

Σαβ({ri}) ≡ −
1

2

∑

i 6=j
V ′(
∣∣∣∣ri − rj

∣∣∣∣)
∣∣∣∣ri − rj

∣∣∣∣−1
(ri − rj)α (ri − rj)β. (2.3)

The stress tensor is a measure of the interactions between the particles

in the system. In general, a shear strain in the plane xα-xβ couples with

the corresponding stress component Σαβ , while the other off-diagonal terms

remain small; the diagonal terms on the other hand are related to the pressure

of the system via

p = − 1

dV
Tr Σ = − 1

dV
(Σ11 + · · ·+ Σdd), (2.4)

Tr Σ being the trace of the tensor.

Mean-field analytical computation

These systems of spheres have been recently analyzed and solved in the

limit of infinite dimensions [Kurchan et al., 2012, 2013; Charbonneau et al.,

2014a]. As explained in Chapter 1, athermal systems of soft spheres at
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sufficiently large densities fall into the marginal glass phase, and are therefore

characterized by a full replica symmetry breaking ansatz (RSB). Inside this

phase, at a packing fraction φJ , we find the jamming point, that is the point

where the system attains marginal mechanical stability and the particles

barely touch each other (thus they have zero energy); at larger packing

fractions the soft particles start to compenetrate and overlap with each other

(increasing the energy), and if the density is not too large the system remains

in the marginal glass phase: we call this portion of the phase space above

the jamming point the UNSAT phase. The name stands for “unsatisfied”: the

term is borrowed from the literature of Constrained Satisfaction Problems,

and in particular from the non-convex perceptron introduced in [Franz and

Parisi, 2016; Altieri et al., 2016; Franz et al., 2017]; the space occupied by

a sphere can be interpreted as a constraint for the other particles, and the

jamming point can then be viewed as the maximum density at which it is

still possible to satisfy all the constraints. The portion of phase space below

the jamming point, where the spheres can be accommodated without forming

any contacts, is called the SAT phase and stands for “satisfied”; the jamming

point is therefore a so-called SAT/UNSAT transition. It turns out that both

the jamming point and the UNSAT phase are endowed with a hierarchy of

states described by a full replica symmetry breaking ansatz, but the Parisi

function βx(q, β, φ) depends on the specific phase.

In Chapter 1 - Replica symmetry breaking and in Appendix a we explain

that this functional order parameter plays an important role in the energy

landscape, because it determines the branching process that defines the ultra-

metric tree of the states. At zero temperature the limit limβ→∞ βx(q, β, φ) ≡
y(q, φ) is well defined. Since y′(q, φ) ≡ dy(q,φ)

dq is essentially the distribution

of the overlap between any two states, its behavior near q = 1 is directly

linked to the density of states “close” to a reference state (that can be

for example the ground state). It has been shown that the derivative of

the Parisi function diverges near q = 1 both at jamming and in the UNSAT

phase; at jamming, the divergence is characterized by an exponent µJ ≈ 1
1.41 :

y′(q, φJ) ≡ y′J(q) ∼ (1− q)−µJ−1 (in the jamming literature this exponent is

usually called µJ ≡ 1
κ [Kurchan et al., 2012, 2013; Charbonneau et al., 2014a]);

quite remarkably, in the whole UNSAT phase the Parisi function diverges with

a constant exponent µUNSAT = 1
2 : y′(q, φ > φJ) ∼ (1 − q)−µUNSAT ≡ y′UNSAT(q)

[Franz et al., 2017]. When a small perturbation is introduced, the distribution

of the new ground state is related to a joint probability of finding a state at

some overlap q with respect to the unperturbed ground state and that this

new state is a global minimum of the energy: it is then reasonable to expect
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the distribution of the new ground state to be heavily affected by the excess

of states close to the unperturbed ground state (q ≈ 1). Indeed, we are going

to show that, for sufficiently small external perturbations, the distribution

of the energy difference between the new ground state and the unperturbed

one develops power-law regime, whose exponent is strictly related to the

exponents µJ , µUNSAT.

In order to study athermal quasi-static avalanches we have to find the ground

state of the unperturbed system and the ground state after that a small

perturbation is applied. The former is the configuration that minimizes the

unperturbed system’s energy H, while the latter is found, in the case of a

shear strain γ, by minimizing the total energy H− γΣ, at a fixed value of γ.

Then, we want to compute the distribution of the difference of the energies

of the two ground states, and average them over several samples. In infinite

dimensions the states of these systems are described by a mean-field RSB

ansatz, that asserts the existence of infinitely many thermodynamic states

{α}, each characterized by an intrinsic free energy (that at zero temperature

becomes the state’s energy Uα) and an intrinsic stress Σα. The states depend

on the specific sample, and in Appendix a we review the joint distribution of

all the energies {Uα} and stresses {Σα}; in systems of soft spheres one expects

the stresses and the energies to be independent one from the other [Yoshino

and Mézard, 2010; Yoshino and Zamponi, 2014], and the distribution for the

energies is given by the branching process introduced in Chapter 1 - Replica

symmetry breaking, that defines the ultrametric structure of the phase space.

This process is a cascade of Poisson point processes, and it depends on the

specific RSB system only via its Parisi functional order parameter y(q, φ)

[Mézard et al., 1985; Ruelle, 1987; Mézard and Parisi, 2001; Panchenko and

Talagrand, 2007; Mézard et al., 2008]. The stresses on the other hand are

sums of local variables (see (2.2)) that one expects to be “simply correlated”:

their distribution is modeled as a diffusion process on the same tree, that

starting from an initial value in the root node at the top of the tree (that

was identified as the cluster containing all the states), reaches the leaves

of the tree (identified with the states). Once we have the distribution of

all the states’ variables {Uα,Σα} we can find the probability distribution

of the total energy difference between the unperturbed ground state and

the perturbed one; the former is simply the minimum Egs = Ugs among the

states’ energies {Uα} (irrespective of the corresponding stress Σgs in that

state, since γ = 0), and the latter is the minimum E′gs = U ′gs − γΣ′gs among

the states’ total energies {Uα − γΣα}. Being the full derivation of such a

distribution quite involved, for the sake of clarity we chose not to present it
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here; it can be found in Appendix b.

In principle we would like to find the distribution of the difference between the

total energy of the unperturbed ground state and that of the new ground state

in an external field γ, that is E′gs−Egs ≡ (U ′gs−γΣ′gs)−Ugs. On the other hand,

in the calculations it is clear that the relevant variable, whose distribution

can be computed easily, is ∆E ≡ ∆U − γ∆Σ ≡ (U ′gs−Ugs)− γ(Σ′gs−Σgs) =

E′gs −Egs + γΣgs. The quantity ∆E is actually the difference between the

total energy of the new ground state and that that the unperturbed one has

under a shear γ: ∆E = (U ′gs − γΣ′gs)− (Ugs − γΣgs). The difference between

∆E and E′gs − Egs is shown in Figure 2.3.

total energy

strain
0 γ

Ugs

U ′
gs

Ugs − γΣgs

U ′
gs − γΣ′

gs

|∆E|
E′

gs − Egs

Figure 2.3: The level crossing between the unperturbed ground state (whose

total energy is — by chance — increasing because of a negative shear stress

Σgs) and the state that is going to be the new ground state at shear strain

γ (whose total energy is decreasing because of a positive shear stress Σ′gs).

The difference between ∆E and E′gs − Egs is also shown.

After performing all the calculations we arrive at the probability distribution

of the jumps ∆E in the total energy induced by a shear strain
√
Nγ � 1:

P(∆E|γ) ≡ δ(∆E)R(0|γ) − θ(∆E < 0) ∂∆ER(∆E|γ), (2.5)

R(∆E|γ) = exp

{
−
√
N |γ|

∫
dq y′(q)

√
1− q ρ

(
∆E√

N |γ| √1− q

)}
, (2.6)

ρ(x) ≡ 2(4π)−
1
2 e−

1
4
x2

+ x H

(
x√
2

)
. (2.7)

where H(x) ≡
∫ x
−∞

dt√
2π
e−

t2

2 is a complementary error function. Keep in mind

that by definition ∆E ≤ 0, since the new ground state has to be at a lower

total energy than the unperturbed one. Formula (2.5) shows manifestly that
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the distribution is normalized and invariant under γ → −γ; this symmetry

arises naturally from the computations and suggests the presence of a cusp

in γ = 0, but in principle, it does not necessarily hold for different kinds of

perturbations.

The validity of equations (2.5)-(2.6) is not restricted only to spheres, either at

jamming or in the UNSAT phase. The approach that we have used is based on

the distribution of the states’ free energies, that depends only on a system’s

Parisi function. On the other hand the distribution of the states’ variables

that couple with the perturbation (that in our case is the shear strain) needs

not be a diffusion on the ultrametric tree; furthermore, those variables might

as well be correlated with the states’ energies. Nonetheless, if

• a system is described by a (continuous) RSB ansatz, and thus by some

functional order parameter y(q);

• the system is subject to any perturbation h that couples to some states’

variables {Yα} (that is, when the field h is turned on the energy of

each state Yα is shifted by hYα);

• the variables {Yα} are independent from the energies {Uα};

• the variables {Yα} are distributed as a diffusion process on the ultra-

metric tree of the states (just like the stresses in the case of dense

spheres);

then the equations (2.5)-(2.6) correctly describe the distribution of avalanches,

apart from a rescaling of the field h that comes from the variance of the

diffusion process. Of course not all perturbations satisfy these assumptions

(in particular the one regarding the independence from the states’ energies).

Interestingly, the Sherrington-Kirkpatrick model for mean-field spin glasses,

embedded in a magnetic field h that couples to the states’ magnetizations

Mα, satisfies all the hypotheses.

2.3 Asymptotic behavior

In the previous section we have recalled that the increasing function y′(q)

is related to the distribution of the overlap between pairs of states at zero

temperature, and that in the models that we are interested in this function

diverges near q = 1, signalling an abundance of states close to each other.

It is clear that the integral in (2.6) depends heavily on the derivative of

the Parisi function, y′(q). In this section we are going to show that the
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probability distribution of static avalanches develops a power-law behavior

for sufficiently small jumps ∆E when the applied perturbation γ is small,

and the exponent of the power law is directly linked to the exponent µ found

in the functional order parameter y(q).

In order to study the asymptotic behavior, let us introduce the func-

tion C(∆E|γ) ≡ − logR(∆E|γ), where R is the function in (2.6). Then,

neglecting the probability of not jumping, that is the term R(0|γ), the

probability density of jumps is P(∆E|γ) = R(∆E|γ) ∂∆EC(∆E|γ); for

|∆E| �
√
N |γ| � 1 and assuming a generic scaling y(q) ∼ (1− q)−µ−1, we

have

∂∆EC(∆E|γ) =

∫ 1

0
dq y′(q) ρ′

[
∆E√

N |γ|√1− q

]
=

=

∣∣∣∣
∆E√
Nγ

∣∣∣∣
−2µ ∫ ∞∣∣∣ ∆E√

N|γ|

∣∣∣2 duuµ−1H

(
−
√
u

2

)
∼
∣∣∣∣

∆E√
Nγ

∣∣∣∣
−2µ

. (2.8)

The last scaling comes from ρ′(x) = H
(
x√
2

)
and the fact that the integral is

finite for ∆E
(√

N |γ|
)−1
→ 0.

Integrating and exponentiating we find also the behavior of R(∆E|γ) =

exp−C(∆E|γ), and, in the end, the asymptotic behavior of P(∆E|γ):

P(∆E|γ) ∼

∼





exp

(
−const ·

√
N |γ|

∣∣∣ ∆E√
Nγ

∣∣∣
−2µ+1

) ∣∣∣ ∆E√
Nγ

∣∣∣
−2µ

, for µ > 1
2 ,

∣∣∣ ∆E√
Nγ

∣∣∣
−1+const×

√
N |γ|

, for µ = 1
2 .

(2.9)

Notice how, for µ > 1
2 , P(∆E|γ) is a power law if

(√
N |γ|

)1+ 1
2µ−1 � |∆E| �

√
N |γ| � 1 — the lower cutoff is given by the exponential. Therefore in

this range we have

P(∆E|γ) ∼
∣∣∣∣

∆E√
Nγ

∣∣∣∣
−τ
, (2.10)

where the avalanche exponent is τ ≡ 2µ. For µ = 1
2 (and small field

√
N |γ|)

there is a small correction to the exponent, of order
√
N |γ|, due to the fact

that the integration of |∆E|−1 in (2.8) gives rise to logarithmic corrections. In

Figure 2.4 and in Figure 2.5 are shown the plots of the probability distribution

related to two different functions y(q) (corresponding to jamming and the

UNSAT phase), for some small values of the field.
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Figure 2.4: Plot of the distribution for a tentative function y(q) that diverges

with an exponent µ = µJ ≈ 1
1.41 , for several values of the shear strain γ

(from the left to the right, with values 10−5, 10−4, 10−3, 10−2): notice the

development of the power-law region as the field is lowered.
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Figure 2.5: b. Plot for a function y(q) that diverges with µ = µSK =

µUNSAT = 1
2 , for several perturbations (from the left to the right, with γ =

10−5, 10−4, 10−3, 10−2, 10−1); here, the exponent of the power law displays

minor corrections for larger field.
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Comparison with previous works

It turns out that the Sherrington-Kirkpatrick spin glass model has a Parisi

function with the same zero temperature behavior as for soft spheres in the

UNSAT phase: it diverges near q = 1 as y(q) ∼ (1− q)−µSK , µSK = µUNSAT = 1
2 .

Furthermore, when the system is embedded in a magnetic field h, the variables

that couple to the external field are the magnetizations: the total energy

of a state is indeed Uα − hMα, Uα being its intrinsic energy and Mα its

magnetization; the distribution of the magnetizations is independent from the

states’ energies and can be written as a diffusion process along the ultrametric

tree [Mézard et al., 1985; Mézard and Virasoro, 1985; Mézard et al., 2008].

Therefore, as stated in Mean-field analytical computation, the distribution of

avalanches in this system can be derived within the same framework that

we used to study systems of soft spheres. We can compare then our result

with [Le Doussal et al., 2012]: in that article the authors studied the static

avalanches in the Sherrington-Kirkpatrick model in a magnetic field. They

find via a differential equation approach based on replica symmetry breaking

that the density of static avalanches ∆M per unit γ in the magnetization is

given by

P(∆M) = θ(∆M)∆M

∫ 1

0
dq y′(q)

e
− ∆M2

4π(1−q)
√

4π(1− q)
. (2.11)

If y(q) diverges, then the integral is dominated by q ≈ 1 and the probability

of small jumps ∆M displays a power-law behavior for small jumps, with an

exponent τ = 2µSK = 1 like for the jumps in the total energy:

P(∆M) ∼ ∆M−1

∫ ∞

∆M2

dt e−t ∼ ∆M−1. (2.12)

In our framework we can recover the same result starting from Equa-

tion (b.28); the detailed calculations can be found in Appendix b - Dis-

tribution of other observables, equations (b.44) to (b.46). In (b.28) we have

computed the probability distribution P(∆U,∆Σ, q|γ), that is the joint

distribution of the differences ∆U,∆Σ in energy and stress between the

unperturbed and perturbed ground states; q is their mutual overlap. If we

keep only the first order in the Taylor expansion for small fields γ > 0, then

integrate out the energy jump ∆U and the overlap q, and divide by the

field strength γ, we find the density of stress jumps per unit strain, a result

identical to (2.11):

P(∆Σ) ∼ ∆Σ−2µ. (2.13)
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Analogously, integrating out ∆U and ∆Σ and dividing by γ we can find the

density P(q) of jumps at a given overlap q (for a generic exponent µ):

P(q) ∼
√

1− q
π

y′(q) ∼ (1− q)−µ− 1
2 . (2.14)

In [Le Doussal et al., 2012] the authors found this result as well, that

in the case of the Sherrington-Kirkpatrick model is expressed as P(q) ∼
(1− q)−1. Since for small displacements we can link the overlap q between two

configurations to their mutual mean square displacement ∆2 via q ≈ e−∆2
,

we find that the distribution of the mean square displacement found during

a jump is (for small jumps and small fields)

P(∆) = P(q)

∣∣∣∣
dq

d∆

∣∣∣∣ ∼ ∆−2µ. (2.15)

For completeness, with the same approach (expanding for small γ, integrating

out ∆Σ and q, and dividing by γ), we find the density of jumps in internal

energy per unit field,

P(∆U) ∼ 1

γ

(
∆U

γ

)−2µ

. (2.16)

Notice that we have to perform the Taylor expansion in order to compute

these distributions, because they cannot be computed as easily as the one

for the jumps in the total energy — their distribution cannot be written in a

simple form as in (2.5)-(2.6). Performing the Taylor expansion we lose the

lower cutoff of these probability densities, and without such cutoff, for any

µ ≥ 1
2 , they would not be integrable (x−2µ is not integrable around x = 0).

The reason of this has to be ascribed to the fact that the cutoff is given by

an essential singularity, which kills every power law and is not analytic; this,

at least, is what happens in (2.9), where the cutoff is of the form e−Az
−2µ+1

,

for z =
∣∣∣ ∆E√

Nγ

∣∣∣� 1.

Frequency of jumps

It is interesting to discuss what is the behavior of the probability of not

jumping, associated with the delta term in equation (2.5). Let us assume

that the perturbing field
√
N |γ| scales as N−α for some exponent α ≥ 0

(because we need
√
N |γ| � 1 for our approach to be valid). If α = 0 (i.e.
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|γ| ∼ N− 1
2 ) then the probability of not jumping is (see (2.5)-(2.6))

P(∆E = 0) = R(0|γ) ≡ exp

{
−
√
N |γ| ρ(0)

∫
dq y′(q)

√
1− q

}
→

→ exp

{
−const ·

∫
dq y′(q)

√
1− q

}
= 0. (2.17)

Therefore in the thermodynamic limit the system jumps with any pertur-

bation, however small it might be. Moreover, the distribution of jumps

∆E tends to a well defined limit, and the power-law behavior is suppressed

beyond the finite region

(|∆Emin| , |∆Emax|) = lim
N→∞

((√
N |γ|

)1+ 1
2µ−1

,
√
N |γ|

)
. (2.18)

In particular, in this case the typical jump is of order |∆E| ∼ N0.

There is, possibly, another interesting regime, that is the one that leads to a

finite probability of not jumping when a small shear strain is applied, even in

the thermodynamic limit N →∞. The zero-temperature maximum overlap

between two states — the Edwards-Anderson order parameter qEA — is 1 in

the thermodynamic limit, and it might, in principle, scale as 1− const ·N−β ,

with some exponent β (that is not known). In this case, all the diverging

integrals in dq would have a cut-off at qEA. If
√
N |γ| scales as N−α then

the probability of not jumping becomes

P(∆E = 0) = R(0|γ) ≡ exp

{
−
√
N |γ| ρ(0)

∫
dq y′(q)

√
1− q

}
≈

≈ exp

{
−ρ(0)N−α

∫ 1−const·N−β

0
dq y′(q)

√
1− q

}
≈

≈ exp
{
−const ·N−α ·Nβ(µ− 1

2
)
}
≡ e−const·Nαc−α

, (2.19)

where we have introduced the exponent αc ≡ 1
2β(2µ− 1); Therefore in the

thermodynamic limit, if
√
N |γ| ∼ N−α with α < αc then P(∆E = 0)→ 0

and the systems always jumps, whereas if α > αc then P(∆E) → 1 and

it never jumps. In the marginal case where α = αc the probability of not

jumping is finite (i.e. strictly between 0 and 1) even in the thermodynamic

limit. Notice that with this scaling we find that the typical jump is naturally

smaller and scales as |∆E| ∼ N−β(2µ−1). Notice that remarkably in the

case of soft spheres in the UNSAT phase under shear, or in a Sherrington-

Kirkpatrick model in a magnetic field, αc = 0, regardless of the value of the

exponent β. In this case for α > 0 the perturbation is too small and the
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system never jumps, while for α = 0 we find that P(∆E = 0) ∼ N−const

(i.e. the system always jumps, for N →∞) due to logarithmic terms in the

integral over dq; in order to have a finite probability of not jumping in the

UNSAT phase for N →∞,
√
N |γ| must scale as (logN)−1.

2.4 Numerical simulations

In this section we are going to compare the mean-field predictions with

numerical simulations in three dimensions. As stated in the previous sections,

at zero temperature one finds that infinite-dimensional systems of soft spheres

are characterized by different critical scalings at jamming and in the UNSAT

regime. As described in [Charbonneau et al., 2014a] the jamming solution

is characterized by a singular Parisi function yJ(q) ∼ (1− q)−µJ for q → 1.

The exponent µJ is related to the pseudo-gap exponent θe in the distribution

of small contact forces at jamming (1.13), according to

µJ =
3 + θe

2(2 + θe)
, (2.20)

In infinite dimensions one finds out that θe ≈ 0.42311 and, consequently,

µJ ≈ 0.70634639. Accordingly, denoting τJ the value of the avalanche

exponent τ at jamming, we have τJ = 2µJ = 3+θe
2+θe

≈ 1.41269. On the other

hand the UNSAT phase above jamming is characterized by another algebraic

behavior of the Parisi function close to q = 1 [Franz et al., 2017], that is

yUNSAT(q) ∼ (1− q)−µUNSAT with µUNSAT = 1
2 regardless of the packing fraction.

Therefore, the corresponding avalanche exponent τUNSAT in this region is

τUNSAT = 2µUNSAT = 1. Quite remarkably, the physics at jamming appears to

be mean-field like also in low dimensions; for instance, the critical power-law

distribution of small forces related to extended rearrangements does not

seem to depend on the spatial dimension: numerically, one finds the same

exponent θe in dimensions from 2 to 12, and its value is the same as the

mean-field prediction. Since τJ depends only on θe, it is natural to wonder

whether the avalanche distribution at jamming in low dimensions has also a

power-law behavior, and whether the exponent (if any) coincides with the

predicted value in the infinite-dimensional model.

We therefore study the distribution of quasi-static jumps in numerical simu-

lations of systems of three-dimensional soft spheres under shear strain. We

consider the standard frictionless harmonic soft sphere model with a potential
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between spheres at distance r

V (r) =
(

1− r

2R

)2
θ
(

1− r

2R

)
(2.21)

where R is the radius of the particles and θ(x) is the step function. We

prepare the samples either in the UNSAT phase at a specific packing fraction

φ, or at jamming, at a packing fraction φJ that is found numerically and

varies slightly from sample to sample due to the finite size of the system (in

three dimensions φJ ≈ 0.64). Of course in the former case we take φ > φJ ,

in particular we simulate systems in the UNSAT phase at a packing fraction

φ ≥ 0.75. The jamming configurations are found recurring to the fact that

close to (above) jamming, the excess packing fraction φ− φJ is proportional

to the pressure p — see Chapter 1 - Systems of spheres and jamming. Thus,

generating two UNSAT configurations at packing fractions φ = 0.9, 1.0 and

minimizing their energies we find two points (φ1 = 1.0, p1) and (φ2 = 0.9, p2),

p1,2 being the corresponding pressures. Performing a linear fit on these points

we find an estimate (φ3, p̃3 = 0) for the jamming point (φJ , p = 0); then,

changing the radius in such a way that the system has a packing fraction φ3,

we minimize the energy and find the pressure p3 — that in general is not

exactly p̃3 = 0. In practice we target a pressure range (usually we require

that the pressure p . 10−5); if p3 is outside the target pressure range, we

add it to the list of points (φi, pi) that is going to be used once again to

find another estimate for the jamming point. In case pi ≡ 0 and φi < φJ ,

we repeatedly replace φi with 1
2(φi + φi−1) and minimize until we find a

pressure pi > 0. If the target pressure is low enough, in the end we reach

configurations where the average number of contacts per particle is close

to twice the space dimension d (as prescribed by the Maxwell’s isostatic

condition) and φ ≈ 0.64. All the configurations (both UNSAT and at jamming)

are generated via a quench from infinite temperature to zero temperature

(that is, we start from random coordinates, drawn uniformly in the simulation

box), and the minimizations end up all in different local minima. Every

minimization is performed via a dissipative molecular dynamics, called the

FIRE algorithm [Bitzek et al., 2006]; loosely speaking, we use the “Velocity

Verlet” algorithm [Verlet, 1967] to discretize Newton’s equations of motion,

and we add an inertial term that depends on the velocity and acceleration

of the particles in the whole system; the minimization is stopped when the

sum of all the forces squared is less then some threshold.

Each sample is then sheared according to the athermal quasi-static protocol,

that is, the system is sheared with a small strain δγ and then a minimization

is performed, letting the system relax to a local minimum; we repeat the
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process until the sum of all the strain steps (called the accumulated strain)

reaches a maximum value γmax. This is done because we expect the first

jumps (at small shear strains) to me independent and identically distributed;

finding the jamming point is usually computationally expensive and with

this protocol we don’t have to throw away a sample after a single step; on

the other hand the accumulated strain cannot be too large, for a reason

that will be explained in the next section (the so-called yielding transition).

The simulation of a system under a shear strain in a simulation box is

not entirely trivial, because we have to tilt the system’s coordinates (e.g.

Figure 2.2). Instead of tilting the axes and changing the coordinate system

of the whole box, the shear strain can be introduced using the Lees-Edwards

boundary conditions [Lees and Edwards, 1972; Kobayashi and Yamamoto,

2011]: to introduce such conditions, we can imagine that the whole system

is divided into smaller cells, arranged on a regular cubic lattice (Figure 2.6,

left). When a shear is imposed in the x1-x2 plane, rather than tilting each

cell we can simply tilt the particles inside each cell, keeping the coordinate

system orthogonal — the particles that exit a cell will enter the neighboring

one. In practice we only simulate one elementary cell, endowed with suitable

periodic boundary conditions: to do so we have to shift each “layer” of

cells along the x1 direction (i.e. horizontally, in Figure 2.6, right), and the

amount each cell is shifted by is proportional to the shear strain δγ and to

the position of the cell along the x2 direction (say, with respect to a reference

fixed cell). In order to enforce the shifting of the layers, when a particle

exits the reference simulation box from the faces along the x2 direction (top

and bottom faces in the figure), it has to be put back from the opposite face

(as usual with periodic boundary conditions), but it has to be translated

by ±δγ along x1; the sign has to be different for particles crossing the top

face or the bottom one, but it can be chosen freely within the simulation,

because the two possible choices correspond to shearing the system towards

the positive x1 direction or towards the negative one, and such a choice is

physically irrelevant. The other faces are endowed with the usual periodic

boundary conditions: when a particle crosses one of such faces, it is put back

into the system from the opposite one. Of course, when some kind of periodic

conditions are imposed on a system, the distance between two particles is

not uniquely defined, because any particle has an infinite number of images

through the periodic boundaries (Figure 2.7); we use the convention that

the distance between two particles i, j is the smallest distance between i and

any of the images of j (or vice-versa, equivalently).
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Figure 2.6: Pictorial representation of Lees-Edwards periodic boundary

conditions. The red dots are all images of the same particle, in different

repetitions of the periodic unit. The other colored particles are those that

belonged to the same unit box before the perturbation is applied. On the

right, the particles have been tilted, but the coordinate system remains

orthogonal.

Numerical results

To test our mean-field predictions in three dimensions, we simulate systems

of soft spheres at various packing fractions — at jamming and in the UNSAT

region (φ = 0.64, 0.75, 0.8, 0.9) — and for different system sizes — N =

500, 1000, 2000, 4000 particles. We generate several hundreds of configurations

(about 300 at jamming and 1000 at higher packing fractions) for each value of

N and φ; then, every sample is sheared for 1000 steps with strain increment

δγ = 10−5, up to a maximum accumulated strain γmax = 0.01. We detect

Figure 2.7: The blue particle is any particle belonging to the simulation box

(that is the box in the center). The red particles are images of the blue one

in different “periodic units”.
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Figure 2.8: Total energy E (top, lighter curve) and stress Σ (bottom, darker

curve) as a function of the accumulated shear strain for a system of N = 4000

particles at jamming (φ ≈ 0.64). Every step is made with δγ = 10−5. We

are interested in the distribution of jumps Emin(γ + δγ)− Emin(γ), Emin(γ)

being the instantaneous ground state when subject to a perturbation γ.

the avalanches in the systems by measuring the energy as a function of strain

as in Figure 2.8; in our simulations the strain step is chosen to be δγ = 10−5,

and the accumulated strain at which we stop the simulation of the sample is

γmax = 0.01; every point in the figure corresponds to a shear strain step (after

the minimization has been carried out). In order to measure the avalanche

distribution we compute the energy jumps Ei+1−Ei from a step to the next

one (adding the shear stress δγΣi — which is always small in any case —

as explained in Spheres and shear-strain and in Figure 2.3), and discard all

the positive jumps that correspond to perturbations that did not lead to a

change of state.

In Figure 2.9 we present the histogram of the energy jumps in a log-log plot,

showing that a power law regime exists both at jamming and for the jammed

configurations in the UNSAT phase. In Table 2.1 we compare the predicted

exponents with the measured ones. The results show some agreement with

the mean-field predictions; it is manifest that the exponent in the jammed
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phase is smaller than the one at jamming, and that it does not depend

strongly on the specific packing fraction φ > φJ . Although some deviations

from the theoretical, infinite-dimensional exponents (Figure 2.4-Figure 2.5)

are clearly observed, we manage to somehow describe the distribution of

avalanches. It is not clear whether these deviations are physical, and therefore

the finite dimensional exponents are slightly different from the predicted

values in infinite dimensions, or they are due to the numerics. The theoretical

predictions are strictly valid for infinite dimensional systems, and even though

we can argue that some properties do not vary with the dimension, there

are features that surely do: for instance, in finite dimensions, there are

localized excitations (the so-called bucklers) that are not captured by the

mean-field description and might be responsible for the differences in the

response (especially in small systems).
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Figure 2.9: Avalanche distribution in systems of several sizes (N =

500, 1000, 2000, 4000), with δγ = 10−5. Histograms of the avalanches for

systems in the UNSAT phase, prepared at packing fractions (a) φ = 0.75 and

(b) φ = 0.8. (c) Jamming, at φ ≈ 0.64. (d) Comparison of all the data:

from top to bottom, φ = φJ , 0.75, 0.8, 0.9. The distribution at jamming

has been shifted by 4 orders of magnitude along the |∆E| axis, and all the

histograms have been arranged vertically for a simpler comparison. The

predicted power laws with τJ ≈ 2
1.41 ≈ 1.42 and τUNSAT = 1 are also shown in

all the plots.
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Figure 2.10: Cumulative distribution functions (CDF) for the avalanches

in samples of N = 1024 particles at jamming; the one on left is for the

energy jumps ∆E (P>J (|∆E|)), and the one on the right is for stress jumps

∆Σ (P>J (∆Σ)). The predicted power laws are also shown, with an exponent

−2µJ + 1 ≈ −0.41269. These distributions have been found after removing

the non power-law part for small jumps.

In Figure 2.10 we also show the cumulative distributions of jumps in the

total energy |∆E| and stress ∆Σ at jamming. Even though we only have

an explicit formula for the former, we know from Comparison with previ-

ous works that the first term in the Taylor expansion (for small fields γ)

for the probability distribution function of the stress jumps has a power

law behavior, and that if the exponent is smaller than −1 there must be

a lower cutoff (otherwise the distribution is not integrable in 0). It is

plausible to assume that the cutoff is governed by a behavior similar to

that found in the distribution of total energy jumps, where the cumulative

distribution is P>J (|∆E|) ≡ Prob [jump > ∆E] ∼ exp
(
−const |∆E|−2µJ+1

)

(see equation (2.9)); therefore, we assume that the cumulative distribu-

tion of stress jumps also has a cutoff of the same form, and it behaves as

P>J (∆Σ) ∼ exp
(
−∆Σ−2µJ+1

)
— in particular, the derivative of this distri-

bution gives the correct power law for the probability distribution function.

For this reason in Figure 2.10 we plot − logP>J (|∆E|) and − logP>J (∆Σ)

φ predicted measured

0.64 1.42 1.52 ± 0.08

0.75 1 1.11 ± 0.03

0.8 1 1.12 ± 0.03

0.9 1 1.08 ± 0.03

Table 2.1: Comparison of predicted and measured exponents.
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on a log-log scale, alongside with the predicted power laws with exponent

−2µJ + 1.

In conclusion we have confirmed that the mean-field description is able to

capture, at least with some approximation, the response of three-dimensional

systems of spheres either at jamming or in the denser UNSAT phase. This is not

surprising in the former phase, because we have already stated that it has been

observed that, at jamming, some critical exponents do not to vary with the

spatial dimension, and hence are equal to the infinite-dimensional prediction.

It is remarkable, on the other hand, that another critical behavior is found in

the UNSAT phase, regardless of the packing fraction and characterized by an

exponent close to the mean-field value. Of course it would be very interesting

to study the response of similar systems also in higher dimensions, providing

a stronger proof for this thesis.

There is another type of universality that arises from the comparison of the

numerical study with the mean-field analytical result. In Avalanches we

have said that, in principle, the response depends on the specific protocol

with which the system is perturbed, but in the end we find a match between

a static calculation (in infinite dimensions) and a quasi-static response (in

three dimensions). The former assumes that the system always lies in its

instantaneous ground state, at any value of the perturbation and whatever

was the previous state. In the latter, instead, the system is perturbed slightly

starting from a given configuration (a local minimum) and is then locally

minimized (via a modified Newtonian dynamics): therefore, the state reached

after a perturbation is not, in general, the new global instantaneous ground

state, but it will reasonably be the closest local minimum found by the

algorithm. As a minor remark, we have to keep in mind that the initial

state found numerically, too, is never — for large systems — the true global

ground state. This unexpected agreement had previously been observed in

other systems [Le Doussal and Wiese, 2009; Le Doussal et al., 2012; Liu

et al., 2016], and it has been ascribed to a universal response characterizing

the slow response of some disordered systems [Liu and Dahmen, 2009]. A

possible justification is found straightforwardly in our theoretical framework;

the distribution of the states that defines the ultrametric tree Figure 1.4

enters into the probability density of the avalanches (2.5)-(2.6) through the

derivative of the Parisi function y′(q), that acts as a weight for the overlap

q at which the new ground state is found. What allows us to compute

the asymptotic power law for small external fields (2.9) is precisely the

algebraic divergence of this function close to q = 1: without this divergence,
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there would not be a power law. In Replica symmetry breaking we have

introduced the Parisi function, and at zero temperature we have defined it

as y′(q) = ∂
∂q limβ→∞ β

∫ q
0 dq̄P(q̄, β), where P(q, β) is the distribution of the

mutual overlap between any pair of states in the system. We can try and

associate such a divergence near q = 1 to an abundance of states close to

each other (that is, at overlap q ≈ 1), that dominate the density P(q, β) at

zero temperature. With a hand-waving argument we might say that this

divergence implies that it is sufficient to look at the states close to the initial

one in order to capture the statistical properties of the response; moreover,

we expect that the local energy landscape of a local energy minimum that is

“deep enough” should not be distinguishable from the neighborhood of the

“true” ground state (i.e. the deepest local minimum). Therefore, for these

reasons, a local minimization should lead to a jump distribution that is not

far from the true, “static” one.
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3
Consequences on elastic moduli

Systems compressed at or above jamming attain mechanical stability due to

the extended network of contacts that form between particles (see Chapter 1,

Figure 1.7). Consequently, they acquire some rigidity in the sense that above

jamming they develop a finite resistance to deformations, namely finite bulk

and shear moduli. The bulk modulus K is a measures the resistance of the

system to compressions and it is defined as K = −V dP
dV , V being the volume

and P the pressure; the shear modulus G is the susceptibility with respect to

a shear strain, G = dΣ(γ)
dγ . A question that arises naturally is whether such

dense amorphous systems display mechanical properties similar to those of

crystalline solids. There are undoubtedly major differences between them;

among the main ones is that in three dimensions the latter display a Debye

distribution of soft (low energy) modes D(ω) ∼ ω2 (ω being the modes’

frequency), whereas the former have an excess of low-energy excitations that

gives rise to a so-called boson peak when the system is close to jamming

[Wyart et al., 2005; Van Hecke, 2009; Liu and Nagel, 2010; Charbonneau

et al., 2016] (see Figure 3.1). The excess soft modes are due to the marginal

nature of the jamming point. This marginality is twofold: first, the mean-field

theory predicts that in the whole surrounding Gardner phase there exists of
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Figure 3.1: Density of states D(ω) for systems at different packing fractions

(far away from jamming on the left, and closer to jamming on the right).

From [O’Hern et al., 2003].

a continuous hierarchy of states and energy levels separated by small energy

barriers. Then, close to jamming there are even further soft modes due to the

isostaticity of the packing [Franz et al., 2015], because tweaking a contact in

the isostatic (and therefore barely stable) network leads to a very low-energy

rearrangement.

3.1 Stress-strain curves

Nonetheless, the response of amorphous systems to an imposed quasi-static

shear strain shares some characteristics with ordered matter. In Figure 3.2 we

plot the stress-strain curve (dark blue curve), which shows the dependence

of the shear stress Σ(γ) on the applied shear strain γ, increased quasi-

statically; the curve has been computed averaging 200 different samples with

256 harmonic spheres, quasi-statically sheared up to an accumulated strain

γmax = 0.5 with steps δγ = 10−4. This average response is qualitatively

similar to that of crystals: initially they respond elastically and the shear

stress Σ(γ) increases linearly with the applied strain, but at some point

(called the yielding point or yielding transition [Lin et al., 2014; Dubey

et al., 2016]), that for this system is found approximately at γ ≈ 0.01, the

response saturates and the shear stress becomes stationary. In ordered solids

the phenomenology behind this behavior is due to the rearrangement of

the dislocations in the medium, that after the yielding becomes “plastic”

(i.e. irreversible) and cause the crystal to break. This, however, is not the

complete description of the response of athermal amorphous systems; in

Figure 3.2 the red curve is the stress-strain curve for a single sample: it has
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Figure 3.2: Average stress-strain curve for a system of 256 soft spheres

(average over 200 samples); the shaded area shows the associated sample-to-

sample variance, and superimposed is also shown the stress-strain curve of

typical sample. After the yielding, the system is in the so-called elasto-plastic

phase, because the continuous response is piecewise linear and punctuated

with intermittent plastic drops in the shear stress that are, on average, larger

than the avalanches found in the linear, elastic regime. Notice that the jumps

shown in Figure 2.8 are computed up to an accumulated strain γ = 0.01 and

therefore correspond to the elastic region in this picture.

nothing to do with its average! It seems then that the average response of

the system is not sufficient to characterize the properties of each curve, and

previous works already studied whether it is even meaningful to apply the

elastic theory to the average behavior of these singular systems ([Hentschel

et al., 2011; Dubey et al., 2016; Biroli and Urbani, 2016]). Each point along

the curve Σ(γ ≡ nδγ) corresponds to a different quasi-static step with a small

strain δγ, and the discontinuities are the irreversible stress avalanches that

we have been studying. If we consider a point at a specific shear strain γ, the

point Σ(γ) along the random curve is a random variable whose statistics is

given by the avalanche distribution P(∆Σ = Σ(γ)−Σ(0)|γ), with Σ(0) being

the initial shear stress found at zero shear strain. Therefore, the expectation
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value of the curve at that point 〈Σ(γ)〉 can be written as

〈Σ(γ)〉 = 〈Σ(0)〉+ 〈∆Σ|γ〉 = 〈∆Σ|γ〉 , (3.1)

where we have kept into account the fact that the sample average of the

initial stress Σ(0) is zero (as found numerically) and we have defined the

average

〈f(∆Σ)|γ〉 ≡
∫

d∆ΣP(∆Σ|γ) f(∆Σ). (3.2)

Strictly speaking (3.1) is valid only in the theoretical framework, where the

state found at a given strain γ = nδγ is the true unique ground state and is

thus independent of the number of steps n used to reach it. In the numerical

quasi-static simulations we never find the true minimum of the total energy,

and therefore we expect the state at γ = nδγ to depend on the number n

and on the size δγ of the steps. However, in the following we assume that if

γ and δγ are sufficiently small then we can neglect this dependence, at least

in a statistical sense — i.e. in computing the average in (3.1).

The curve (3.1) is a perfectly regular functions, and as such it can be expanded

in a power series with respect to the strain γ around zero:

〈Σ(γ)〉 ≈ γGa +
1

2
γ2Ga,2 +

1

3!
γ3Ga,3 · · · (3.3)

The coefficient Ga is called the (linear) shear modulus, and all the higher

order terms Ga,2, Ga,3 and so on are the nonlinear shear moduli. The

“a” stands for “annealed”, since this expansion is for the sample-averaged

stress-strain curve. These moduli are defined as

Ga,m = ∂mγ 〈Σ(γ)〉γ=0 = ∂mγ 〈∆Σ|γ〉γ=0 . (3.4)

In particular, the linear elastic modulus Ga = ∂γ 〈∆Σ|γ〉γ=0 is a finite positive

quantity and it can be interpreted as the slope of the average stress-strain

curve at zero strain.

3.2 Quenched elastic moduli

On the other hand we see that the average does not tell us all the information

about the response of the system, that is actually extremely jerky and

random. We have already stated in Chapter 2 - Numerical simulations that

we expect the first jumps, those in the elastic regime at small shear strains

(before yielding), to be almost independent and identically distributed — in
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particular, Σ(γ)− Σ(0) and Σ(γ′)− Σ(γ) are uncorrelated when γ′ > γ. In

Appendix b (equations (b.48)-(b.51)) we have computed the moments of

their distribution and we have found that they scale with the strain step as

〈
∆Σk

∣∣∣γ
〉
∼ γ (3.5)

for every k-th moment (with k 6= 0). This behavior is reminiscent of a

Brownian motion, where in particular the second moment scales linearly

with the time interval (here represented by γ); indeed, the assumption of

independent jumps distributed according to the avalanche distribution is

equivalent to stating that the elastic portion of the stress-strain curve is

exactly a random walk with independent increments, whose distribution

is slightly more complex than the Gaussian case of the Brownian motion.

Keeping this analogy in mind, we can now try to study the “quenched”

behavior of the stress-strain curve in a single sample. A way to do that is to

define the linear and nonlinear shear moduli using limits of finite differences;

for instance, we can define the quenched linear modulus as

Gq(δγ) ≡ Σ(δγ)− Σ(0)

δγ
, (3.6)

for a small strain step δγ. This is, of course, a random variable. To

characterize its distribution we can compute the average and the second

moment:

〈Gq〉 =

〈
Σ(δγ)− Σ(0)

δγ

〉
, (3.7)

〈
G2

q

〉
=

〈(
Σ(δγ)− Σ(0)

δγ

)2
〉
. (3.8)

Using equation (3.5) we find the correct scaling for a small strain step δγ:

〈Gq〉 =
〈∆Σ|δγ〉

δγ
∼ 1, (3.9)

〈
G2

q

〉
=

〈
∆Σ2|δγ

〉

δγ2
∼ δγ−1. (3.10)

If we take the limit for δγ → 0 we see that the first equation tends to

lim 〈Gq〉 = ∂γ 〈Σ(γ)〉γ=0 = Ga, that is the annealed linear shear modulus,

which is a finite quantity. The second equation, instead, tells us that the

second moment diverges,
〈
G2

q

〉
= ∞. If we recall the analogy with the

Brownian motion, this result is not unexpected: it simply means that these

random walks are not differentiable.
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We can also study the statistics of the “quenched” nonlinear shear moduli

Gq,m, with m > 1, that we can define as

Gq,m ≡ δγ−m
m∑

n=0

(
m

n

)
(−1)(m−n) Σ(nδγ). (3.11)

We define the quenched moduli as higher-order finite differences of the stress-

strain curve, in such a way that the small δγ limit of their average can be

easily calculated, yielding

lim
δγ→0

〈Gq,m〉 = ∂mγ Σ(γ) = Ga,m, (3.12)

that is the corresponding annealed nonlinear shear modulus. Equation (3.12)

comes from the fact that higher order finite differences tend to differential

operators when the step is small [Milne-Thomson, 2000]. We can show that

the second moment of all higher moduli diverges even faster than
〈
G2

q

〉
; for

the purpose of proving it, let us call DmΣ(γ) the m-th order finite difference

operator that appears in (3.11), namely

DmΣ(γ) =

m∑

n=0

(
m

n

)
(−1)(m−n) Σ(γ + nδγ); (3.13)

notice that then Gq,m = δγ−mDmΣ(0). Just like for differential operators,

this operator satisfies the relationship Dm+1 = D1Dm = DmD1 and we can

thus write

〈
G2

q,m

〉
= δγ−2m

〈
(DmΣ(0))2

〉
= δγ−2m

〈
(Dm−1D1Σ(0))

2
〉

=

= δγ−2m

〈[
m−1∑

n=0

(
m− 1

n

)
(−1)(m−1−n)D1Σ(nδγ)

]2〉
. (3.14)

At this point we notice that D1Σ(nδγ) = Σ((n + 1)δγ) − Σ(nδγ) ≡ ∆Σn

is just an increment along the stress-strain curve; we put a subscript n to

mark the fact that the differences Σ(γ + (n1 + 1)δγ) − Σ(γ + n1δγ) and

Σ(γ + (n2 + 1)δγ)− Σ(γ + n2δγ) are uncorrelated when n1 6= n2, because of

the assumption of independence of the jumps. Then, writing explicitly the

square, and separating the two contributions with identical (n1 = n2) and
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distinct (n1 6= n2) increments,

〈
G2

q,m

〉
=

= δγ−2m

〈
m−1∑

n1,n2=0

(
m− 1

n1

)(
m− 1

n2

)
(−1)(n1+n2) ∆Σn1∆Σn2

〉
=

= δγ−2m





m−1∑

n1=0

(
m− 1

n1

)2 〈
∆Σ2

n1
|δγ
〉

+

+

m−1∑

n1,n2=0
n1 6=n2

(
m− 1

n1

)(
m− 1

n2

)
(−1)(n1+n2) 〈∆Σn1 |δγ〉 〈∆Σn2 |δγ〉




. (3.15)

We can neglect the second sum (that with n1 6= n2) because (3.5) implies

that each term 〈∆Σn1 |δγ〉 〈∆Σn2 |δγ〉 is of order δγ2, while in the first sum

each term
〈
∆Σ2

n1
|δγ
〉

is of order δγ; in the end,

〈
G2

q,m

〉
∼ δγ1−2m

m−1∑

n1=0

(
m− 1

n1

)2

∼ δγ1−2m; (3.16)

this quantity diverges when δγ → 0. Therefore we found that the variance

of all quenched moduli diverges! Consequently, the annealed shear moduli

are not a representative measure of the physical behavior of a single sample.

This result follows directly from the fact that the stress-strain curve in the

elastic regime behaves as a random walk, and we assumed that the jumps

were independently distributed; the consequent result is then independent

of the packing fraction of the system: the same divergence should be found

either at jamming or in the surrounding marginal glass phase, where the

system is always (in infinite dimensions, at least) described by a continuous

replica symmetry breaking. Moreover, it has been proven in [Biroli and

Urbani, 2016] that also at the Gardner transition introduced in Chapter 1

- Systems of spheres and jamming, where the system passes from a stable

glass to the marginally stable phase with full replica symmetry breaking, the

elastic response exhibits a singular behavior. At the transition they found

that the averages of the shear modulus and of all the higher nonlinear moduli

are finite; the variances, on the other hand, diverge in the thermodynamic

limit, with the sole exception of the variance of the shear modulus G, whose

fluctuations are subleading.
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Figure 3.3: Behavior of the first two moments of the shear modulus G as a

function of δγ, for different system sizes N = 128, 256, 512. The averages have

been performed on the jumps of different samples found up to a maximum

accumulated strain γ ≈ 0.01. (a) and (c) show the average shear modulus

(at jamming and at φ = 0.75, respectively), that is finite in the δγ → 0 limit.

(b) and (d) show the sample-to-sample variance of the shear modulus (again

at jamming and at φ = 0.75); both diverge in the δγ → 0 limit as δγ−1, as

predicted. Log scale on the δγ axis in both figures; log scale on the vertical

axis only in the pictures to the right.

Numerical results

The theoretical predictions that we have shown here are, strictly speaking,

only valid for infinite dimensional systems satisfying the assumption of

stationarity in the elastic regime of the stress-strain curve, namely that

consecutive jumps are independent and identically distributed. In order to

test the validity of our results, we conclude this section with a comparison

with some numerical simulations. The results are presented in Figure 3.3;

in the picture we plotted both the average and the second moment of the

quenched shear modulus Gq, namely 〈Gq〉 and
〈
G2

q

〉
, as a function of the

finite strain step δγ; comparing how these quantities scale with the step δγ

allows us to extrapolate the limiting behavior. The numerical results show
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that indeed the average values remain always finite even for small steps,

and that the second moments diverge as
〈
G2

q

〉
∼ δγ−1 in both phases, at

jamming and in the UNSAT phase, as predicted.

3.3 Elastic moduli under different scalings

However, one has to be careful when interpreting these results. In order

to properly study the elastic response of a system one should, in principle,

first take the thermodynamic limit, computing the statistics of jumps at

a fixed strain step δγ, and only in the end take the limit δγ → 0. This

is not what we do here; in the theoretical framework we need to assume

that the perturbation is small, namely that
√
Nδγ � 1: this assumption

prevents us from taking the limit N →∞ at a fixed strain step δγ. In the

previous paragraphs we have analyzed what happens when the two limits

are inverted, that is when the strain step becomes smaller and smaller while

keeping constant the (finite) system size N . We can find some further insight

by taking other (allowed) limits: in particular we have the instruments to

study the behavior of the quenched shear moduli when both N → ∞ and

δγ → 0 at the same time, with
√
Nδγ ∼ N−α, α ≥ 0. We recall that we

introduced this scaling in Chapter 2 - Frequency of jumps, when we studied

the probability that the system does not jump when a strain δγ is applied.

In particular, we found that the asymptotic behavior of the probability of

not jumping depends on two exponents, α and αc = 1
2β(2µ − 1); µ is the

usual exponent that governs the divergence of the Parisi function y(q), and

β is the tentative exponent that describes how this function scales with the

system size N (its numerical value is not known). We have then argued that

the probability of not jumping P(∆E = 0) scales as

P(∆E = 0) ≈ e−const·Nαc−α
, (3.17)

and in particular the system always jumps (in the thermodynamic limit) if α <

αc (“strong” perturbation), it never jumps if α > αc (“weak” perturbation)

and it has a finite probability non not jumping when α = αc. The UNSAT

case is somewhat marginal, since µ = 1
2 and αc = 0 lead to a logarithmic

extra term:

P(∆E = 0) ≈ e−const1·N−α log(const2·N). (3.18)

In particular, if α = 0 too then P(∆E = 0) ≈ N−const. (The constants

appearing in the last equations depend on how the Parisi function scale with

respect to N and on its behavior close to q = 1). We will now assume that
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the probability of not jumping with respect to the total energy is the same

as for the shear stress: P(∆E = 0) = P(∆Σ = 0); this is true, because both

probabilities arise from the very same term in equation (b.28) in Appendix b.

The reason why we have recalled the scalings of the probability that the

system does not jump is because now that
√
Nδγ ∼ N−α, the averages

over jumps ∆Σ should take into account a possibly large probability of not

jumping; they should therefore be written as

〈〈f(∆Σ)|δγ〉〉 = P(∆Σ = 0) · f(0) + (1− P(∆Σ = 0)) · 〈f(∆Σ)|δγ〉 =

= (1− P(∆Σ = 0)) · 〈f(∆Σ)|δγ〉 , (3.19)

where the expectations 〈f(∆Σ)|δγ〉 is the average over the positive jumps

only. We can now compute the average and second moment of the quenched

linear shear modulus. Now that we are interested in the scalings with respect

to the system size N we are going to define the “intensive modulus” gq as

the shear modulus Gq normalized by N ; its first moments are

〈〈gq〉〉 ≡ N−1 〈〈Gq〉〉 =
〈〈∆Σ〉〉
Nδγ

= (1− P(∆Σ = 0))
〈∆Σ〉
Nδγ

, (3.20)

〈〈
g2
q

〉〉
≡ N−2

〈〈
G2
q

〉〉
=

〈〈
∆Σ2

〉〉

N2δγ2
= (1− P(∆Σ = 0))

〈
∆Σ2

〉

N2δγ2
. (3.21)

In order to get the right scalings with respect to N we also need to consider

the N dependance that has been neglected in (3.5); explicitly (see equation

(b.54)), 〈
∆Σk|δγ

〉
∼ N k+1

2 δγ ∼ N k
2
−α. (3.22)

Plugging this scaling, the asymptotic behavior of the probability of not

jumping, and the fact that
√
Nδγ ∼ N−α in equations (3.21) and (3.21) we

find (for αc > 0)

〈〈gq〉〉 ∼
(

1− e−const·Nαc−α
) N 1

2
−α

N
1
2
−α

= 1− e−const·Nαc−α
, (3.23)

〈〈
g2
q

〉〉
∼
(

1− e−const·Nαc−α
) N1−α

N1−2α
=
(

1− e−const·Nαc−α
)
Nα. (3.24)

This means that when the applied perturbation is “strong” (α < αc), then

〈〈gq〉〉 ∼ 1 is finite and the second moment
〈〈
g2
q

〉〉
∼ Nα →∞ diverges. If on

the contrary the perturbation is “weak” (α > αc), then 〈〈gq〉〉 ∼ Nαc−α → 0

and
〈〈
g2
q

〉〉
∼ Nαc → ∞: therefore even though the system tends to jump

less and less as its size increases, the second moment of the shear modulus

diverges. The only case where the second moment is finite is for α = 0

(or equivalently when δγ ∼ N−
1
2 ), and then 〈〈gq〉〉 ∼

〈〈
g2
q

〉〉
∼ 1. The only
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dependence on the exponent µ and therefore on the specific phase the system

is in (namely, whether it is at jamming or in the UNSAT phase) comes from

the exponent αc = 1
2β(2µ− 1). In the UNSAT phase this exponent becomes

particularly simple (αc = 0) because µ = 1
2 ; in this phase the probability

of not jumping is described by a different asymptotic behavior, and the

resulting moments for the linear shear modulus are

〈〈gq〉〉 ∼ 1− e−const1·N−α log(const2N), (3.25)
〈〈
g2
q

〉〉
∼
(

1− e−const1·N−α log(const2N)
)
Nα. (3.26)

When α > 0 (that means for sufficiently small perturbations) we find that

〈〈gq〉〉 ∼ N−α log(const ·N)→ 0 and
〈〈
g2
q

〉〉
∼ log(const ·N)→∞. When on

the other hand α = 0 then 〈〈gq〉〉 ∼
〈〈
g2
q

〉〉
∼ 1. All the results have been

summarized in Table 3.1.

With these calculations we have shown that the elastic behavior of amorphous

systems is not at all trivial in the marginal glass phase after the Gardner

transition, at jamming and in the UNSAT phase. Apart from the case where

α = 0 (regardless of αc), the second moment of the shear modulus diverges,

and therefore its mean is not representative of a typical samples’ stress-strain

curve. Of course all the scalings presented in Table 3.1 and derived from the

mean-field theory should be studied numerically to see what is the extent

of their validity. It would be extremely interesting also to see whether a

finite size scaling of the response of these systems would allow the retrieval

α < αc α = αc α > αc

αc > 0
〈〈gq〉〉 ∼ 1〈〈
g2
q

〉〉
∼ Nα

〈〈gq〉〉 ∼ 1〈〈
g2
q

〉〉
∼ Nαc

〈〈gq〉〉 ∼ Nαc−α
〈〈
g2
q

〉〉
∼ Nαc

αc = 0 × 〈〈gq〉〉 ∼ 1〈〈
g2
q

〉〉
∼ 1

〈〈gq〉〉 ∼ N−α log(cN)〈〈
g2
q

〉〉
∼ log(cN)

Table 3.1: Scaling behavior for the first moments 〈〈gq〉〉,
〈〈
g2
q

〉〉
of the quenched

linear shear modulus, as a function of the two exponents α, αc, when the

system is sheared with a strain step that scales as
√
Nδγ ∼ N−α. The case

αc = 0 corresponds to the UNSAT phase where µ = 1
2 , and the character c is

just some constant — not necessarily equal in the two cases.
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of the exponent αc, and thus of the exponent β that describes how the

Edwards-Anderson parameter qEA scales with N , 1− qEA ∼ N−β . Of course,

one should compare all these results with the elastic response of system where

the relevant limits have been taken in the proper order, namely N →∞ first

and then δγ → 0.
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4
Reconstruction of the order parameter

Athermal mean-field disordered systems that can are described by a replica

symmetry breaking ansatz are characterized by a functional order parameter,

that is the Parisi function y(q). In the previous chapters we have shown

how this function governs the distribution of quasi-static avalanches at zero

temperature induced by a class of perturbations, and in particular we have

argued that if it diverges algebraically near q = 1, then the avalanche

distribution develops a power-law behavior. This is for instance the case of

infinite-dimensional dense systems of soft particles, either at jamming or in

the denser UNSAT phase. The fact that the mean-field predictions are in good

agreement with the finite-dimensional numerical simulations is not a general

feature and it might be a peculiar property of these specific systems, that, as

already suggested in previous works, seem to be mean-field-like even in low

dimensions — at least at jamming. Scope of this chapter is to introduce a

way to define and measure the function y(q) in numerical simulations, for an

arbitrary system. Inverting the problem that we have treated in the previous

sections, we will argue that it is possible to define the Parisi function via the

avalanche distribution associated with a new perturbation. It is not clear to

us, for the moment, whether this quantity might be meaningful for systems
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that are not described within the replica symmetry breaking framework;

nonetheless, this approach can be applied to any system, and the resulting

tentative function y(q) might give some insights on the disordered nature of

the energy landscape. In particular, we expect the result to be valid for dense

systems of spheres, and an interesting application would be, for instance, to

compute how the functional order parameter evolves as a function of the

accumulated shear strain in a quasi-static perturbation; in particular, we

would like to find the exponent µ with which the Parisi function diverges

near q = 1, for a system at or after the yielding point, that in Figure 3.2 is

located approximately at γ ≈ 0.02.

4.1 Mean-field framework

The zero-temperature Parisi function y(q) is defined as

lim
β→∞

β

∫ q

0
dq̄P(q̄, β), (4.1)

where P(q, β) is the distribution of overlaps q between pairs of states: clearly,

in systems with an exponentially large number of states we cannot even

attempt at computing such a distribution by a direct enumeration of the

energy minima. Furthermore, in finite-dimensional systems there are other

complications that hinder the search for the states, such as the existence

of many metastable states that do not exist in the mean-field counterpart.

In principle, we can perturb a system in such a way that its response is

described by the distribution of avalanches that we have already found; as

we have shown, from such a distribution it is then possible to measure the

exponent µ that appears in the asymptotic behavior of the Parisi function

close to q = 1, namely y′(q) ∼ (1− q)µ−1. In order to do so, the perturbation

and the associated conjugate variable have to abide by the rules listed in

Chapter 2 - Mean-field analytical computation: for instance, the conjugate

variables have to be Gaussian distributed and independent from the energies

of the states. A problem then arises when, for a generic system, it is not

easy to find such a perturbation. Another issue is due to the fact that the

distribution of avalanches found in (2.5)-(2.6) does not allow for a complete

reconstruction of the full order parameter y(q), but only of its exponent µ

(and only when the perturbation is small enough).

In [Franz and Parisi, 2000] the authors have found analytically the distribu-

tion of athermal, quasi-static avalanches in systems described by the replica

symmetry breaking ansatz and subject to a perturbation that acts as a repul-

sion with respect to the the ground state: if the ground state configuration
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qk−1

qk

qk+1

yk−1

yk

Ugs + ε Uα + εqk Uβ + εqk−1

Figure 4.1: Representation of the perturbation on the ultrametric tree of

the states of a system described by a replica symmetry breaking ansatz with

k levels — as described in Chapter 1 - Replica symmetry breaking and in

Appendix a, Appendix b. The leftmost leaf represents the ground state,

at overlap q = 1 with itself, whose perturbed energy is Ugs + ε, Ugs being

its unperturbed energy. Each state α in the first cluster (marked by the

dashed lines) has overlap qk with the ground state, and its energy is thus

shifted by εqk, which is smaller than ε. The same holds for all the other

clusters of states at a given overlap: for instance, in the next clusters, where

all the states lie at overlap qk−1, all the energies are shifted by εqk−1. The

terms {yi} are the discretization of the Parisi function y(q) used to define

the cascade of Poisson point processes for the distribution of the states, as

in Appendix a.

is s0, the unperturbed energy H(s) of a configuration s is shifted by a term

proportional to the overlap q(s, s0) between s and s0:

H(s)→ H(s) + εq(s, s0). (4.2)

This is a repulsion from the ground state, because the perturbation is

maximum when q(s, s0) = 1, which happens at s = s0: therefore, the ground

state is lifted by ε; all the other states, lying at a smaller overlap, are shifted

by a smaller quantity (a graphical representation on the ultrametric tree

is shown in Figure 4.1). To study the avalanches one has to find the new

ground state when ε 6= 0: equivalently, one has to find the state α such that

the total energy Eα ≡ Uα+ εqα is minimal. With a calculation entirely based

on elementary probabilistic methods, and assuming an ultrametric structure

of states described by a functional order parameter y(q), the authors have

computed the probability distribution P(∆E|ε) for the difference of total
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energy ∆E between the new and unperturbed ground states. Its formula is1

P(∆E|ε) =

= δ

(
∆E

ε
= 1

)
ε−1e−εχ(1) + θ

(
∆E

ε
< 1

)
y

(
∆E

ε

)
e−εχ(∆E

ε ), (4.3)

where χ(q) ≡
∫ q

0 dq̄ y(q̄). Let Ugs bet the energy of the unperturbed ground

state, U ′gs that of the perturbed one, and let q be the overlap between them.

Since Ugs is the ground-state energy, it is smaller than the energy of all the

other states, and in particular Ugs < U ′gs. On the other hand, U ′gs + εq is, by

definition, the total energy of the new ground state, and it is therefore smaller

than the total energy of all the other states: therefore, U ′gs + εq < Ugs + ε× 1.

These two inequalities imply that

0 < q <
(U ′gs + εq)− (Ugs + 0× 1)

ε
≡ ∆E

ε
< 1, (4.4)

where ∆E ≡ U ′gs + εq − Ugs is the total energy difference between the two

ground states. The bounds (4.4) state that ∆E
ε is a quantity similar to an

overlap (between 0 and 1), and therefore there is no problem if it appears as

an argument of the functions y(q) and χ(q) in (4.3). The expression of the

distribution simplifies a little if we define a scaling variable w = ∆E
ε :

P(w|ε) = δ(w = 1)e−εχ(1) + θ(w < 1) y(w) e−εχ(w). (4.5)

Notice some vague similarity with the avalanche distribution found in (2.5)-

(2.6): the delta contribution corresponds to the probability that the system

does not jump to a new ground state when the perturbation is turned on;

the second term is the derivative of an exponential that depends on the

functional order parameter y(q). From (4.5) it is then possible to derive the

cumulative distribution R(w|ε) ≡
∫ 1+

w dw̄P(w̄|ε) — 1+ in the extreme of

integration stands to remind that we are integrating over the Dirac delta

in w = 1 too. This function corresponds to the function R in (2.6), and its

form is particularly simple:

R(w|ε) = e−εχ(w). (4.6)

Notice that this is the inverse cumulative function (that is, the probabil-

ity that the variable is larger than w): indeed, R(0|ε) = 1, R(1−|ε) ≡∫ 1+

1− dw̄P(w̄|ε) = e−εχ(1) and R(1+|ε) ≡
∫ 1+

1+ dw̄P(w̄|ε) = 0 — the difference

1For the sake of clarity, we are using again the notation δ(A = B) ≡ δ(A − B) and

θ(A < B) ≡ θ(B −A).
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between the latter quantities being whether we include or not of the delta

function in the integration.

Equation (4.6) allows us to infer the Parisi function, either from the cumula-

tive distribution of avalanches R(w|ε) or from the probability distribution

P(w|ε); recalling the definition of χ(w) we have that

∫ w

0
dq y(q) = −1

ε
logR(w|ε), (4.7)

y(q) = −1

ε
∂q log

∫ 1+

q
dwP(w|ε) =

1

ε

P(q|ε)
∫ 1+

q dwP(w|ε)
. (4.8)

Of course, the functions y(q) and
∫ w

0 dq y(q) in equations (4.7) and (4.8) do

not depend on the value of the coupling ε, even though the distributions

P(w|ε) and R(w|ε) surely do.

4.2 Numerical simulations

The numerical simulation of this perturbation is not entirely straightforward,

because computing the overlap between a given configuration and the unper-

turbed ground state is neither easy nor fast. In principle we would like to use

the formula introduced in Chapter 1 - Replica symmetry breaking, namely

q(s1, s2) = N−1
N∑

i,j=1

W (|s1
i − s2

j |) (4.9)

where s1,2 are two configurations of N particles, and W (r) is a window

function with W (0) = 1 and such that it vanishes when the argument

is large enough. This definition allows for a proper comparison between

two configurations and, most importantly, is differentiable — if it were not

differentiable, it would be much more difficult to minimize the total energy

(4.2). Since its computation is quite slow, we tried using the fact that the

overlap q between two configurations is approximately equal to 1−∆2 ≈ e−∆2

(∆2 being the mean squared displacement) when q ≈ 1 and ∆2 ≈ 0; the

computation of the mean squared displacement is much faster, therefore we

used the following perturbation:

H(s)→ H(s) + εe−∆2(s,s0), (4.10)

We then went on with the usual athermal quasi-static protocol, according

to which the system is first initialized in its unperturbed ground state s0,
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Figure 4.2: First numerical simulations for systems of N = 1024 harmonic

spheres at different packing fractions, with a coupling ε = 10−3. We plot

−1
ε log [1−R(1− q|ε)] ∼ q1−µ. The packing fractions and tentative power-

law exponents are: (a) φ = 0.65, µ = 0.71; (b) φ = 0.65, µ ≈ 0.6, with an

accumulated shear γ = 0.01, reached with steps δγ = 10−4; (c) φ = 0.75, µ =

0.5; (d) φ = 0.90, µ = 0.5.

and then system’s energy is minimized with a finite perturbation with ε > 0,

thus finding the new ground state.

The results of the simulations are presented in Figure 4.2, where we plot the

quantity

− 1

ε
log [1−R(1− q|ε)] = −1

ε
log

[
1−

∫ 1+

1−q
dwP(w|ε)

]
≈

≈ −1

ε
log

[
1− const× ε

∫ 1+

1−q
dw y(w)

]
≈ const×

∫ 1+

1−q
dw y(w) ∼

∼ q1−µ. (4.11)

The first approximation comes from (4.8) for q ≈ 1, since the denominator

tends to e−εχ(1); the second one is valid for small ε (we developed the

logarithm in powers of ε, and kept the first term only). This quantity
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therefore is a measure of the integral
∫ 1+

1−q dw y(w), or, alternatively, of the

exponent µ. Even with a low accuracy (due to the fact that, especially in the

jammed UNSAT phase, we need many more samples, since big jumps are rare

at small ε), we manage to find some agreement between the numerical results

and the theoretical (mean-field) value of the exponent µ found in previous

works, namely µ ≈ 0.71 at jamming and µ = 1
2 at larger packing fractions.

We find it also remarkable that systems at jamming, at an accumulated

shear strain γ = 0.01 — reached by small quasi-static steps with δγ = 10−4

— also display a power-law behavior in their response, with an exponent that

is definitely different (it is approximately µ ≈ 0.6). In the plots the power

law does not continue down to q = 1 — as it should. This could be ascribed

to two different reasons (that have yet to be tested): one is a finite-size

effect due to the coupling ε (in (4.11) we took the limit ε→ 0); the other is

the fact that the delta peak in q = 1 in the cumulative distribution R(q|ε)
is numerically smoothed out, and therefore the power-law behavior is only

approximate in that region.

Unfortunately, the perturbation (4.10) does not induce the desired behavior:

this is because q ≈ e−∆2
only when the mean squared displacement is small;

the perturbation that we introduced destabilizes the initial ground state, and

the dynamics tends to reach a configuration that has low intrinsic energy and

that is furthest from it (that is, it tries maximizing the Euclidean distance

between the two configurations).2 The main problem lies in the fact that

the proper overlap definition (4.9) is invariant under a permutation of the

spheres (keeping all the positions fixed): if we compare a configuration s1

with particles’ coordinates (s1, . . . , sN ) and another configuration s2 whose

coordinates are the same as s1, but shuffled, as in (sπ(1), . . . , sπ(N)) — where

π is a permutation — then we find an overlap q(s1, s2) = 1. On the contrary,

the mean squared displacement in (4.10) is not invariant under shuffling of

the particles’ labels, because it is computed as the sum of squared distances

between corresponding particles in the two configurations: if two particles

i and j are exchanged in one of the two, the Euclidean distance changes.

The difference between the dynamics induced by (4.10) and by (4.2) can be

understood with a one-dimensional example (see Figure 4.3). The first row

in the picture shows the initial ground state of a dense packing (the red dots

represent the position of the particles): in one dimension this is a regular

2Moreover, we simulate the spheres in a unit box with periodic boundary conditions,

and this results in a discontinuity at the borders of the box (it is possible to avoid this

issue by adding a cut-off to the term e−∆2

, such that it decays to zero sufficiently fast

when ∆2 increases).
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lattice. The former dynamics would simply translate the system, in such a

way to minimize the extra term e−∆2
and therefore maximizing the mean

squared displacement ∆2 with the initial configuration (the energy term

H(s) is already minimized, because the initial configuration is the ground

state). Conversely, the true dynamics (4.2) does not allow such behavior.

Let us assume that the initial configuration is s0 and that s ≡ s0 + δs is a

shifted configuration, where each particle is translated by the same amount

δsi ≡ δs; then, the overlap q(s, s0) is a periodic function of the displacement

δs, with period the particles’ diameter. The periodicity comes from the fact

that the overlap does not depend on the specific order of the particles: it

simply measures the amount of similarity between the two packings; when

the displacement is equal to a particle’s diameter, the two configurations end

up being identical, apart from a relabeling of the particles’ indices.

Figure 4.3: Repulsion from the ground state in one dimension. The red curve

is a representation of the overlap q between the initial ground state and an

identical configuration that is shifted horizontally, with a window function

W (r) = 1
2 + 1

2 tanh (K(a0 − r)); we have chosen K = 10/R and a0 = 0.3R,

R being the spheres’ radius. Red dots represent the initial ground state —

drawn in the first row. Each of the lower rows show the new ground state

(yellow dots), for different values of the coupling ε = 10−2, 1, 102, 104. The

system is at a packing fraction φ = 1.17.

66



In Figure 4.3 the red curve represent the overlap q(s, s0) as a function of the

displacement δs, for a specific choice of the window function W (r). Each

row corresponds to a different value of the coupling ε (that increases from

the top to the bottom), and the yellow dots are the positions of the particles

in the perturbed ground state, that can be compared easily with the initial

positions, marked with the red dots. In all the different samples, one of the

particles (the third one, in the picture) has been quenched: this way it is

simpler to observe how a configuration evolves with different perturbations.

When ε is small (as in the second row, where ε = 10−2), the system barely

moves, because the harmonic repulsion between neighboring spheres is much

stronger; as ε is increased the particles find new equilibrium positions. When

the perturbation is strong enough to overcome the harmonic contact forces,

the particles tend to “fall” into the basins defined by the potential εq(s, s0),

that are the valleys of the red curve in the picture.

Figure 4.4: Repulsion from the ground state in two dimensions. Even

though The overlap — not shown here — is still a periodic function, the

particles can move in a higher dimensional space that allows for more complex

displacements. The gray circles are the initial configuration, and the orange

ones are the new ground state when the coupling is ε = 102. On the right

we show the displacement field between the two configurations; of course,

the quenched particles did not move. The system is at a packing fraction

φ = 1.17.
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Figure 4.5: Repulsion from the ground state in three dimensions. The blue

and red spheres are the initial configuration and the perturbed ground state,

respectively. On the right, we show the displacement field, where the arrow

size is proportional to the magnitude of the displacement.

Of course the one-dimensional example does not capture the complete nature

of the jammed packings, since it is ordered. In Figure 4.4 and Figure 4.5 we

present a comparison between the initial and the perturbed ground states

in two- and three-dimensional systems, and we also draw the displacement

field between the two configurations. In order to compute reliably the

overlap between two configurations, we followed the prescription presented

in [Karmakar and Parisi, 2013] according to which about 9% of the particles

are quenched in space — in the two-dimensional example shown in Figure 4.4

it is easy to spot the frozen particles: they are those that did not move. The

main reason to quench some particles is that otherwise the system would

be invariant to translations and rotations (and not only to a relabeling of

the particles’ indices). Therefore, two configurations s1 and s2 linked by a

combination of such transformations should be regarded as identical, and in

particular their overlap should be q(s1, s2) = 1. The overlap (4.9), though, is

not invariant, as can be deduced from the red curve in Figure 4.3. However,

quenching some particles solves this issue, because it breaks the rotational

and translational invariance of the system.
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We still do not have enough statistics from the results of the numerical

simulations for the repulsion from the ground state with quenched particles

and the correct definition of the overlap (4.9). In any case, we expect to

recover results similar to those presented in Figure 4.2 — perhaps with

some improvements. What strikes the most in the previous simulations,

where there is evidence suggesting that the perturbation did not perform as

expected, is that we still managed to recover the exponents µ predicted by the

(mean-field) theory of infinite-dimensional spheres. A possible justification

would be that the Parisi function y(q) is strictly related to the distribution of

the states at overlap q with respect to the ground state (actually, with respect

to any state), and in the systems that we studied we already know that

this function diverges near q = 1. This suggests that there is a humongous

number of states that are close to the initial minimum, and we might expect

that numerical simulations find the closest “acceptable minimum”, whatever

(non-pathological) perturbation is applied. It seems reasonable then that the

distribution of such a minimum is somehow influenced by the function y(q)

in a much more general setting, and when the applied perturbation is weak

we can expect to be able to see some trace of its divergence.
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Conclusions

In this thesis we have re-examined the problem of avalanches in glassy

disordered systems described within the framework of replica symmetry

breaking. We have computed the avalanche distribution for systems perturbed

by a class of perturbations that includes, for instance, the spin glass (the

Sherrington-Kirkpatrick model) in a magnetic field and dense systems of soft

spheres under a shear strain. We have shown how such a distribution, within

the hypothesis on the external forces, depends on the specific system only

through the functional order parameter that describes the replica symmetry

breaking, namely the Parisi function y(q). In particular, systems of soft

spheres at jamming and in the UNSAT phase (at larger packing fractions) are

characterized by different functions y(q), and in both phases they diverge at

q = 1 as y(q) ∼ (1− q)µ, with different exponents µ; this divergence turns

out to be governing the response of the system to a small quasi-static external

driving, and for this reason the corresponding avalanche distribution develops

a power-law behavior, that is therefore described by two different exponents

according to the packing fraction of the system. We have then compared the

infinite-dimensional predictions with three-dimensional numerical simulations

of harmonic soft spheres. Rather interestingly we have found that the results

are in agreement with the mean-field predictions, that is that the response

displays a power-law region when the external perturbation is sufficiently

small and that such a power law has different exponents when the system

is at jamming or in the denser phase, where the exponent is remarkably

constant. As a consequence of the properties of the avalanche distribution we

have also shown that the elastic properties of these granular systems (in the

linear regime) are critical at jamming and in the UNSAT phase, in the sense

that all the elastic moduli have a divergent variance, and thus the average

behavior of a sample is not, in general, the typical one.

The last chapter of this thesis has been devoted to the discussion of our

ongoing work, where we argue that it is possible to compute the Parisi
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function y(q) by measuring the avalanche statistics induced by a specific

perturbation that acts as a repulsion of the states from the ground state.

Ideally we would like to use this approach to compute how the Parisi function

evolves when we increase the accumulated shear strain in a sheared system:

in this way we could find, for instance, what is its exponent µ at the yielding

point, or even after that, in the so-called elasto-plastic phase, where the

response of the system becomes stationary. This would allow us to compare

our results on the avalanches with all the works that have been published

in the field, for example [Maloney and Lemaitre, 2004; Fiocco et al., 2013;

Arévalo and Ciamarra, 2014; Regev et al., 2015; Lin et al., 2015; Puosi et al.,

2016; Leishangthem et al., 2016; Jaiswal et al., 2016].
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a
Derrida-Ruelle cascades

In this appendix we describe the picture of the ergodicity breaking that

emerges from the solution of mean-field disordered models described by

replica symmetry breaking. At sufficiently low temperature the Gibbs mea-

sure of these systems is split in sample-dependent ergodic components, known

as pure states. To describe the organization of the states in the phase-space

we first introduce the notion of overlap q(s1, s2) between two configurations

s1, s2: this is a co-distance that measures the similarity between two configu-

rations; its absolute value is normalized between 1 and 0 (for identical and

maximally different configurations, respectively). Different definitions are

used for different systems: for instance, for a spin glass with N spins (e.g. the

Sherrington-Kirkpatrick model) it can be defined as q(s1, s2) = N−1s1 · s2;

for N spheres, q(s1, s2) = N−1
∑N

i,j=1W (|s1
i − s2

j |), where s1,2
i is the posi-

tion of the i-th particle in the two configurations and W (r) is a window

function that vanishes when r is larger than some threshold and such that

w(0) = 1. The specific choice is irrelevant for what follows, since proper

definitions are equivalent [Parisi, 1998; Franz et al., 1999; Parisi and Ricci-

Tersenghi, 2000; Parisi, 2002]. Then, after defining the overlap between

configurations, we define the overlap between two states α, β as the av-

erage of the overlap between configurations belonging to the two states,
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qαβ =
∑

s1∈α,s2∈β w(s1;β)w(s2;β)q(s1, s2); here w(s;β) is the Boltzmann

weight Z−1
J exp (−βH(s; J)) at inverse temperature β, and we consider a

configuration s belonging to a state α if it lies in its basin (or, operatively, if

a zero temperature steepest descent dynamics brings the configuration to

the minimum of the basin, called the state’s inherent structure). A good

choice as order parameter for replica symmetry breaking turns out to be

the sample-averaged probability distribution of the overlap between pairs

of states, P(q, β) =
∑

α,γ wα(β)wγ(β)δ(q − qαγ) [Mézard et al., 2008], where

wα(β) = e−βFα∑
γ e
−βFγ is the Boltzmann weight of the state α, and {Fα} are

the states’ free energies; equivalently, we can consider the Parisi function

βx(q, β) =
∫ q

0 dqP(q, β). The free energies {Fα} of the states are in full

generality the sum of an extensive, sample-independent part F0, a subleading

sample-dependent part F̃0 (that is the same for each state in a given sample)

and an O(N0) state-dependent term fα. The latter are random variables

whose distribution is almost universal, in the sense that it depends on the

specific system only through its Parisi function βx(q, β), and it can be defined

as the suitable limit of a hierarchical sequence of Poisson point processes.

The induced probability distribution for the normalized weights {wα(β)}
is then called Derrida-Ruelle cascade [Mézard and Virasoro, 1985; Mézard

et al., 1985, 1984b, 2008, 1984c; Ruelle, 1987; Aizenman et al., 2006; Arguin,

2007].

Before introducing the hierarchical construction, we will briefly describe the

continuous Poisson point processes, restricted to the scope of our interest, with

the aim of fixing a clear notation. The Poisson point process [Streit, 2010] is a

probability distribution associated with a set of points {f1, . . . , fn} belonging

to a suitable space, that we will assume to be the set R of real numbers;

an event is then defined as the object ξ = ({f1, . . . , fn}, n) ≡ (f1, . . . , fn;n),

where the n points {fi} are considered unordered. The probability distribu-

tion P(ξ) of a Poisson point process is parametrized by an intensity function

λ(f) defined on the same space that the points {fi} belong to, i.e. the reals.

Then, the distribution of any event is decomposed into the product of the

probability of the number n of points (that is a Poisson variable), and the

conditional probability of those points:

PN (n) =
1

n!

(∫

R
df λ(f)

)n
e−
∫
R df λ(f), (a.1)

Pf |N (f1, . . . , fn|n) =

n∏

i=1

λ(fi)∫
R df λ(f)

, (a.2)
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P [ξ = (f1, . . . , fn;n)] = PN (n)Pf |N (f1, . . . , fn|n) =

=
e−
∫
R df λ(f)

n!

n∏

i=1

λ(fi). (a.3)

PN (n) is the Poisson distribution for the number of points, with mean and

variance Λ ≡
∫
R df λ(f), and Pf |N (f1, . . . , fn|n) is a product of conditionally

independent distributions for the value of each point. One simple calculation

that will be useful in the next appendix is to compute the distribution of the

minimum value f generated by a Poisson point process; this is the probability

that some point has value f and that all the other points have larger values,

namely1

Pmin(f) ≡ E
∑

i

δ(f − fi)
1,n∏

j 6=i
θ(fj > f) =

= e−Λ
∑

n>0

1

n!

∑

i

λ(f)

1,n∏

j 6=i

∫ ∞

f
dfj λ(fj) =

= λ(f) e−Λ
∑

n>1

[∫∞
f df ′ λ(f ′)

]n−1

(n− 1)!
= λ(f) e−

∫ f
−∞ df ′ λ(f ′). (a.4)

Notice that
∫
R df Pmin(f) = 1− e−Λ < 1 if Λ <∞, because with probability

e−Λ there are no points. On the other hand, there is no problem in defining a

Poisson point process with Λ =∞: this simply means that on average there

is an infinite number of points in each realization of the process, scattered

all over the space (R); indeed, this happens for the distributions of free

energies in systems with replica symmetry breaking, since they have an

infinite number of states. Keep in mind that if Λ = ∞ then the integrals

in (a.1)-(a.3) should be regularized in order to be finite and one can take

the suitable limits after performing the calculations, for instance in (a.4).

Formally, this can be done by substituting λ(f) with a truncated λ̃(f ; c), such

that Λ̃(c) ≡
∫
R df λ̃(f ; c) is finite when c < ∞, and limc→∞ λ̃(f ; c) = λ(f),

but the specific calculations need not be performed.

We are also going to need a straightforward generalization of Poisson point

processes, namely marked Poisson point processes, that are defined by

associating a random object (i.e. a mark, or random labels) to each point

1Throughout this book, for the sake of clarity, we use the notation θ(A > B) ≡ θ(A−B)

and θ(A < B) ≡ θ(B −A), θ(·) being the step function.

77



of the underlying process. Let dµ(σ) be a probability density defined on R,

and ({f1, . . . , fn}, n) a realization of a Poisson point process with intensity

λ(f); then, we mark this realization with n µ-distributed points

({f1, . . . , fn}, n)→ ({(f1, σ1), . . . , (fn, σn)}, n) ≡
≡ (f1, σ1, . . . , fn, σn;n). (a.5)

Its probability is simply

P[ξ = (f1, σ1, . . . , fn, σn;n)] =

= PN (n)Pf |N (f1, . . . , fn|n)Pσ|N (σ1, . . . , σn|n) =

=
e−Λ

n!

n∏

i=1

λ(fi)µ(σi). (a.6)

Noting that Λ =
∫
R df λ(f) =

∫
R2 dfdσ λ(f)µ(σ) (µ is a normalized distri-

bution), it is easy to observe that this marked Poisson point process is just a

Poisson point process defined on the Cartesian product R2 of the pairs (f, σ),

with intensity function λ̃(f, σ) ≡ λ(f)µ(σ) (this is the essence of the marking

theorem). We can find the distribution of the “minimum” of such a marked

process, too, provided we define an order for the pairs (f1, σ1) < (f2, σ2)

according to f1 − γσ1 < f2 − γσ2 (anticipating that the f ’s are going to be

the free energies and the σ’s the stresses of the states, with γ being a shear

strain). Thanks to the marking theorem, we need not redo the calculations:

Pmin(f, σ|γ) ≡ Pmin[(f, σ)] =

= λ̃(f, σ) e−
∫
R2 df ′dσ′ θ[(f ′,σ′)<(f,σ)] λ̃(f ′,σ′) ≡

≡ λ(f)µ(σ) e−
∫
R2 df ′dσ′ θ(f ′−γσ′<f−γσ)λ(f ′)µ(σ′). (a.7)

This is the distribution of the free energy f and stress σ of the point (f, σ)

that minimizes the “total energy” f − γσ.

We will now describe the hierarchical structure of the states and the distri-

bution of their free energies and stresses. The free energies can be generated

via a stochastic branching process starting from a root reference node. It is

usually described considering first a tree of finite depth k, and then taking

the suitable limit for k → ∞: the process is fully characterized by 2k + 1

parameters q1 < · · · < qk+1, βx1 < · · · < βxk that can be thought of as

a step-wise function βx(q, β) = yi in (qi, qi+1); the function y(q, β) is the

Parisi function βx(q, β), and in the limit k →∞ it becomes continuous. For

the systems that we are dealing with, the function βx(q, β) is known from
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previous analytical works [Kurchan et al., 2012, 2013; Charbonneau et al.,

2014a; Franz et al., 2017], and is defined as the solution to a variational

problem; for large inverse temperature β, βx(q, β) ∼ y(q) +O(β−1) where

y(q) is the zero-temperature limit of βx(q, β), which will be needed later to

study the zero-temperature distribution of the states.

f̄1 f̄2 · · · f̄M1

q1

q2

q3

f̄∅

βx1

βx2

fα fβ fγ

Figure a.1: A realization of the cascade of Poisson point processes for a k = 2

tree; three generic states α, β, γ are explicitly shown.

In order to describe the branching process, we start with an example of a

system with k = 2 levels of replica symmetry breaking, as in Figure a.1. We

start from a reference free energy f̄∅: f̄∅ in principle might be absorbed in

the subextensive, sample dependent part of the free energy F̃α, but we prefer

to keep it here as a reminder that all this distribution concerns the states of

a single sample. The first level of the tree is extracted from a Poisson point

process with intensity function

λ1(f̄) ≡ λ1(f̄∅ → f̄) ≡ eβx1(f̄−f̄∅), (a.8)

and it defines the M1 branches f̄∅ →
(
f̄1, . . . , f̄M1 ;M1

)
. Keep in mind that

this function is such that Λ1 ≡
∫∞
−∞ df̄ λ1(f̄) = ∞: indeed, the expected

number of nodes generated at each step is infinite. Then, for each node

αi = 1, . . . ,M1 at the first level, we generate its sub-branch according to

another Poisson point process with intensity

λ2(f̄) ≡ λ2(f̄αi → f̄) ≡ eβx2(f̄−f̄αi). (a.9)

This branch is made of the nodes
(
f̄αi,1, . . . , f̄αi,Mαi

;Mαi

)
; joining all the

sub-branches corresponding to different nodes αi at the first level, we have
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generated the free energies {f̄α1α2} ≡ {fα} of all the states. We can also

associate each overlap qi to the i-th level, as shown in the figure: then, the

overlap between two states (i.e. leaves) is simply the value qi at the level

of the closest common ancestor node; for instance, for the states α, β, γ in

Figure a.1, qαβ = qγα = q1 and qβγ = q2, while the self-overlaps are all

identical to qαα = q3 (q3 ≡ qEA is known as the Edwards-Anderson order

parameter in spin glasses, and at zero temperature it becomes 1). At this

point the ultrametric structure is manifest: it states that for any choice

of the states {α, β, γ}, the two smallest overlaps between them are equal;

alternatively, one can say that the triangle with sides {qαβ, qβγ , qγα} is always

isosceles.

The general process for a tree with k levels is a straightforward iteration of

the Poisson point process for all k levels; for each node α1 · · ·αi−1 at the i-th

level, with free energy f̄α1···αi−1 , its sub-branch is a realization of a Poisson

point process with intensity

λi(f̄) ≡ λi(f̄α1···αi−1 → f̄) ≡ eβxi(f̄−f̄α1···αi−1). (a.10)

We label the Mα1···αi−1 elements of the realization α1 · · ·αi−1αi (with αi =

1, . . . ,Mα1···αi−1). In the end, i.e. after generating all the nodes α1 · · ·αk, the

free-energies of the states {fα} ≡ {f̄α1···αk} are generated as the leaves of

the tree.

In the literature [Mézard et al., 1985; Mézard and Parisi, 2001; Mézard

et al., 2008] this ultrametric tree is often generated via a different pro-

cess. Starting from a node f̄∅ = 0 (in order to simplify the notation),

it is possible to generate M points {f̄1, . . . , f̄M that are independent and

identically distributed, with probability P
(
f̄
)

= βx1e
βx1(f̄−f̄c)θ

(
f̄c − f̄

)
,

where f̄c is a cutoff. In the end the true distribution is found in the limit

f̄c → ∞, M → ∞, M e−βx1f̄c → const. The two approaches are equiva-

lent [Ruelle, 1987]. After defining the distribution of all the free energies

{fα}, we can write down the distribution for the corresponding normalized

Boltzmann weights, wα = e−βfα∑
γ e
−βfγ ; for a k = 1 RSB system, the resulting

distribution is a Poisson-Dirichlet process, and the generalization for any k

is called Derrida-Ruelle probability cascade. In the literature (e.g. in [Ruelle,

1987; Panchenko and Talagrand, 2007]) it is possible to find a more detailed

study of the properties of such processes; notice that often it is customary

to change variables, from free-energy-like variables f to x = ef .

When we apply a small perturbation to a system, we are introducing an

additional term in the energy. If we shear a system of spheres, the free
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energy of a single state is shifted as fα → fα − γσα, where γ is the shear

strain and σα is an intrinsic state-dependent shear stress. The situation for a

magnetic system (e.g. the Sherrington-Kirkpatrick model) in a magnetic field

is similar: the magnetic field plays the role of the shear and the magnetizations

correspond to the stresses. Both the Sherrington-Kirkpatrick model and the

systems of spheres share the property that these conjugate variables (the

stresses and magnetizations) are uncorrelated [Yoshino and Mézard, 2010]

with the energy, and it can be shown [Mézard and Virasoro, 1985] that they

are correlated Gaussian variables, the correlation between two different states

being related to their mutual overlap only. It is possible to generate the

stresses with the following diffusion process on the same ultrametric tree

generated by the previous branching process (a.8)-(a.10): we start from some

reference stress Σ̄∅ related to the sample — just like for the free energy; then,

the stress Σ̄α1···αi of each node α1 · · ·αi in the tree is Gaussian distributed

with average the stress Σ̄α1···αi−1 of its parent node and variance proportional

to qi − qi−1; its distribution is thus

µ
(
Σ̄α1···αi |Σ̄α1···αi−1

)
=
e
−(Σ̄α1···αi−Σ̄α1···αi−1)

2

2N(qi−qi−1)

√
2πN(qi − qi−1)

. (a.11)

Again, we continue the process until we reach the states, located on the

leaves of the tree. Notice that, since we are attaching a random variable (the

stress) to each point of a realization of some Poisson point process, we can

also think that the process of all the energies and stresses {fα,Σα} in the

states is a cascade of marked Poisson point processes.

In the end we, we are interested in systems with full replica symmetry

breaking; to study the structure of their states we have to take the continuous

limit k →∞. Without loss of generality we can set qi = i δq, such that in

the limit k →∞ we have δq → 0, kδq → 1, and βxi ≡ βx(qi)→ βx(q, β).
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b
Distribution of athermal avalanches

In this Appendix we show how to compute the exact distribution of static

avalanches, via an approach based entirely on elementary probabilistic meth-

ods. Our goal is to study the static avalanches in systems of spheres under

shear strain, and therefore we are going to consider only systems whose struc-

ture is given by the Derrida-Ruelle construction presented in Appendix a,

namely systems with replica symmetry breaking whose response to the

external perturbation is described by Gaussian distributed conjugate vari-

ables (that in the case of spheres are the states’ stresses and, for instance,

in the Sherrington-Kirkpatrick model in a magnetic field are the states’

magnetizations).

Suppose that the system is in its unperturbed ground state. When the

perturbation is turned on and set to some small value γ, we expect the

structure of the states not to change a lot, in the sense that there are no

minima that disappear and that no new minimum is created; the only effect

of such a perturbation is to shift the energies by some random amount.

For spheres under a shear strain γ, the total free energies of the states are

Fα − γΣα, with Fα and Σα being the free energy and stress distributed

according to the processes described in Appendix a. In particular the free
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energies {Fα} of a system of N spheres are the sum of some higher order

terms (that in the thermodynamic limit tend to the extensive contribution

to the free energy of the system and are the same for all the states) and

O(1) terms {fα} that are in general different for each state. In this appendix

we want to study the distribution of the instantaneous ground state as a

function of the external field γ; when comparing the total energy of two

states we are only concerned with their energy difference: for this reason, we

are going to keep only the terms {fα}, since Fα − Fβ = fα − fβ when the

two states α, β belong to the same sample. In order to further simplify the

notation, we are going to rescale the stresses as Σα ≡
√
N σα, so that the

stresses’ variance is independent of the system size; the dependence on N can

then be absorbed into the shear strain γ, calling γ̃ ≡
√
N γ. Keep in mind

that, in general, we might want γ to scale with N in the thermodynamic

limit, and different scalings will give rise to different behaviors (see Chapter 2

- Asymptotic behavior - Frequency of jumps).

The goal of this Appendix is to compute the probability distribution of

the new ground state, that is the state α that minimizes the total energy

eα ≡ uα − γ̃σα among all the possible states (uα being the energy of the

state, i.e. the zero-temperature free energy fα), that are random realizations

of the process described in Appendix a, taken at β →∞ and thus governed

by the Parisi function βx(q, β) → y(q). The object that we are interested

in is the joint probability distribution Pmin(∆u,∆σ, q|γ̃) that the perturbed

ground state (at a shear γ̃) has energy ugs + ∆u and stress σgs + ∆σ, relative

to the unperturbed ground state with energy and stress ugs, σgs, and that

the overlap between the two ground states is q. We would like to compute

this distribution as an average over the possible states α that minimize the

total energy1:

Pmin(∆u,∆σ, q|γ̃) = E
∑

α

δ(uα = ugs + ∆u)δ(σα = σgs + ∆σ)×

× δ(qα,gs = q)
∏

β 6=α
θ(uβ − γ̃σβ > uα − γ̃σα), (b.1)

In this formula qα,gs stands for the overlap between the state α and the

unperturbed ground state “gs”. The expectation is taken over the whole

ultrametric tree, marked with the stresses’ Gaussian process, conditional on

the unperturbed ground state. The computation of this distribution is not

straightforward when we want to deal with the case of arbitrary number k

1Here we are using the following notations: δ(A = B) ≡ δ(A − B) and θ(A > B) ≡
θ(A−B).
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of RSB levels, but it is nonetheless possible to perform the calculations by

exploiting the ultrametric, tree-like structure of the states.

Introducing clusters and their joint probability

Even though in the end we want to describe systems with a continuous replica

symmetry breaking, it is easier to deal with a finite number k of levels of

replica symmetry breaking, and to take only in the end the limit k →∞. The

structure of the states is then completely described by a discretized Parisi

function y(q), defined by the discrete points q1, . . . , qk+1 and yi ≡ y(qi). We

can then partition the leaves of the ultrametric tree (that are identified with

the states) into clusters Ci, with i = 1, . . . , k+ 1: each cluster Ci is the set of

states at overlap qi with the unperturbed ground state; by definition, the

cluster Ck+1 contains only the ground state, because qk+1 is the overlap of a

state with itself, at for β →∞, k →∞ we will have, in the end, qk+1 → 1.

qk−1

qk

qk+1

yk−1

yk

ūk−1, σ̄k−1

ūk, σ̄k

Ck+1 Ck Ck−1

uk+1, σk+1 uk, σk uk−1, σk−1

Figure b.1: A portion of an ultrametric tree for a k-RSB system. The

dashed boxes enclose the Ck and Ck−1 clusters; the cluster Ck+1 contains the

unperturbed ground state only. The minima in each cluster are also shown,

and the corresponding states can be tracked along the tree following the

thick lines.

In Figure b.1 it is shown a portion of an ultrametric tree with k levels, with

the first clusters explicitly shown. The original, unperturbed ground state

has been put arbitrarily to the left of the picture: it is the only node in the

first cluster, Ck+1. Each cluster Ci can be easily visualized as the set of nodes

whose closest common ancestor node (ūi, σ̄i) with the ground state lies at
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overlap qi. In this way, we can climb the ultrametric tree starting from the

ground state, and for each ancestor node there will be an associated cluster

spawning from it. The idea to compute the distribution (b.1) is to, first, find

the conditional distribution of the minima inside each cluster : namely, the

energies and stresses {ui, σi}, such that ui− γ̃σi is the minimum total energy

found among the nodes in Ci, conditional on the ancestor node (ūi, σ̄i) of

the whole cluster, at the scale qi. In Figure b.1, for instance, the conditional

ancestor nodes for the clusters Ck and Ck−1 are the ones marked with (ūk, σ̄k)

and (ūk−1, σ̄k−1), respectively. Let us call these conditional distributions for

each cluster’s minimum pi(ui, σi|ūi, σ̄i; γ̃). Introducing these quantities, we

are effectively integrating out all the nodes that are not minima inside their

clusters, and in the end we are left with the factor graph shown in Figure b.2,

where there is a single node per cluster, and a backbone of the tree that

can be thought of as the thick lines in Figure b.1. We call it a factor graph

because, when integrated over the intermediate (ancestor) nodes {ūi, σ̄i}, it

represents the joint distribution Pcluster [{u, σ}| γ̃] of the minima in all the

clusters. Indeed:

Pcluster [{u, σ}| γ̃; ū∅, σ̄∅] =

∫ [k+1∏

i=2

dūidσ̄i

]
×

×
[
k∏

i=1

λ̃i [(ūi, σ̄i)→ (ūi+1, σ̄i+1)]

] [
k+1∏

i=1

pi(ui, σi|ūi, σ̄i; γ̃)

]
, (b.2)

Notice that the the first product starts from i = 2, because the ancestor node

(ū1, σ̄1) is the reference root node of the tree (see Appendix a): it depends

on the specific sample, but it is not, in principle, Poisson distributed. In the

following, when it will be important to distinguish this term from the other

ancestor variables over which we are integrating, we will call its variables

ū∅ and σ̄∅ for the sake of clarity. Of course, this means that the whole

probability distribution Pcluster depends on such variables, and this is why

we have written the explicit dependence in Pcluster [{u, σ}| γ̃; ū∅, σ̄∅].

The functions λ̃i that appear in (b.2) are the intensity functions that com-

pletely define the marked Poisson point processes for the branching at each

level. The intensity λ̃i [(ūi, σ̄i)→ (ūi+1, σ̄i+1)] can also be interpreted as

exactly the probability that, among the points of the Poisson point process,

there is at least one branch going from the ancestor node (ūi, σ̄i) to the
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Ck+1 Ck Ck−1

uk+1, σk+1 uk, σk uk−1, σk−1

ūk−1, σ̄k−1

ūk, σ̄k

ūk+1, σ̄k+1

qk−1

qk

qk+1

Figure b.2: The tree after the integration of the states that are not minima

of any cluster, leaving only the relevant branches (thick ones in Figure b.1

left); this tree can be thought of as the factor graph of the joint probability

Pcluster [{u, σ}| γ̃] of the minima in each cluster.

ancestor node (ūi+1, σ̄i+1):

λ̃i [(ūi, σ̄i)→ (ūi+1, σ̄i+1)] ≡ λi(ūi → ūi+1)µ(σ̄i → σ̄i+1) =

= eyi(ūi+1−ūi) e
− (σ̄i+1−σ̄i)

2

2∆q

√
2π∆q

. (b.3)

(Without loss of generality, we have chosen qi+1 − qi ≡ ∆q for all levels;

compare this formula with (a.10)-(a.11)).

Distribution of the minimum in a cluster

Let us assume that all the backbone in Figure b.2 has been generated,

sampling from the product of the distributions λ̃i in (b.2). At this point

we have to find an expression for the distributions pi, conditional on the

ancestor nodes in the backbone. The probability of the minimum inside Ck+1

is trivial, since such a cluster contains only one state:

pk+1(ui, σi|ūi, σ̄i; γ̃) = δ(ui − ūi) δ(σi − σ̄i). (b.4)

In Figure b.1 we see that the clusters are somehow self-similar, in the sense

that a cluster Ci is the union of several (infinite, actually) subclusters that
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are statistically equivalent to the cluster Ci+1.2

qi

qi+1

yi

ūi, σ̄i

{α}

︸ ︷︷ ︸
subclusters rooted in {α}

backbone

Figure b.3: The initial (near qi) part of cluster Ci. The first level generated

from the associated Poisson point process with intensity function λi is the set

of nodes {α}, and from each node α there is a subcluster that is statistically

equivalent to the cluster Ci+1.

Let us consider the cluster Ci, shown in some detail in Figure b.3, sprouting

from the backbone of the factor graph. The first level of its descendent nodes,

called {α} in what follows, has been generated with a Poisson point process

with intensity function λ̃i [(ūi, σ̄i)→ (ūα, σ̄α)]. The subclusters rooted in

each node α are statistically equivalent to the cluster Ci+1, since the cor-

responding cascades of Poisson point processes have the same intensities

at each level. For this reason we can proceed recursively, the main idea

being that the minimum of Ci has to be the minimum of one of the smaller

subclusters equivalent to Ci+1. Given the distribution pi+1 of the minimum

in Ci+1, we can write

2Strictly speaking, the statistical equivalence only holds if the average number of

branches sprouting from a node is infinite, which is the case here since
∫

duλi(u) =∞ —

see Appendix a. If the number of child nodes were finite, than one would need be more

careful, because one of the branches of the cluster Ci belongs to the backbone in Figure b.1

and in Figure b.3.
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pi (u, σ|ūi, σ̄i; γ̃; {ūα, σ̄α},M) =
M∑

α=1

pi+1 (u, σ|ūα, σ̄α; γ̃)×

×
M∏

β=1
β 6=α

∫
du′dσ′ pi+1

(
u′, σ′|ūβ, σ̄β; γ̃

)
θ
(
u′ − γ̃σ′ > u− γ̃σ

)
. (b.5)

The meaning of this formula is that we are looking for the probability that

(u, σ) is the minimum of a subcluster rooted in some node α (this is what pi+1

is there for), with the constraint that the minimum in any other subcluster

has larger total energy. The distribution is conditional on the realization

({ūα, σ̄α},M) of the first Poisson point process spawned from (ūi, σ̄i) (M

stands for the number of points in the set). Next, we take the expectation

over such a marked branching process:

pi (u, σ|ūi, σ̄i; γ̃) ≡ E{ūα,σ̄α},M pi (u, σ|ūi, σ̄i; γ̃; {ūα, σ̄α},M) . (b.6)

Using equation (a.3) we can easily show that equation (b.5) can be cast as

pi (u, σ|ūi, σ̄i; γ̃) = p̂i (u, σ|ūi, σ̄i; γ̃)×

× exp

[
−
∫

du′dσ′ p̂i
(
u′, σ′|ūi, σ̄i; γ̃

)
θ
(
u′ − γ̃σ′ < u− γ̃σ

)]
, (b.7)

where

p̂i (u, σ|ūi, σ̄i; γ̃) =
∫

dūi+1dσ̄i+1 λ̃i [(ūi, σ̄i)→ (ūi+1, σ̄i+1)] pi+1 (u, σ|ūi+1, σ̄i+1) . (b.8)

Compare these formulae with (a.7) in Appendix a: the distribution of the

minimum in the cluster has the same form, but in this case the corresponding

intensity function, instead of being λ̃i = λiµi, is the average of λ̃i weighted

with pi+1.

Luckily, this recursion on the distributions {p, p̂} can be solved exactly,

because the functions λ, µ are simple exponentials and Gaussian distributions.

The following results can be proven by induction starting from pk+1 (defined

in (b.4)):

pi(ui, σi|ūi, σ̄i; γ̃) =

= p̂i(ui, σi|ūi, σ̄i; γ̃) exp

[
− ci
yi
eyi(ui−ūi−γ̃(σi−σ̄i))

]
, (b.9)
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and

p̂i(ui, σi|ūi, σ̄i; γ̃) =

= ci exp

[
yi(ui − ūi)−

(σi − σ̄i)2

2(k + 1− i)∆q + γ̃fi(σi − σ̄i)
]
. (b.10)

Where we have defined ∆yi ≡ yi − yi−1, fi ≡
∑k
j=i yj

k+1−i − yi, and

ci ≡ ci+1

(
ci+1

yi+1

)1−∆yi+1
yi+1

Γ

(
∆yi+1

yi+1

)
, (b.11)

with ck ≡ 1. In the computation we have neglected quadratic terms in

γ̃2, because we are only interested in the leading behavior for small γ̃. We

have written the value of the constants ci for completeness, but in the end

they will not be relevant). Notice that all these functions depend only on

ui − ūi, σ− σ̄i (since this property was shared by all the processes involved).

From clusters’ minima to global ground states

Once we have the joint probability for the minima in all the clusters we

can compute the distribution of the jumps in all the relevant observables

between the unperturbed ground state and the perturbed one. We can

rewrite equation (b.1) as

Pmin(∆u,∆σ, qj |γ̃; ū∅, σ̄∅) =

=

∫
dugs du′gs dσgs dσ′gs Pgs(ugs, σgs, k + 1;u′gs, σ

′
gs, j|γ̃; ū∅, σ̄∅)×

× δ(u′gs − ugs = ∆u) δ(σ′gs − σgs = ∆σ). (b.12)

In this formula we are integrating over all possible energies and stresses of the

unperturbed ground state (ugs and σgs) and of the perturbed one (u′gs and σ′gs)

with a constraint on their differences. We want to find also the distribution

of the overlap between the two states. In order to do so, we recall that the

unperturbed minimum has been put arbitrarily and without loss of generality

in the first cluster Ck+1 — this is just a labeling of the leaves of the ultrametric

tree; constraining the new ground state to lie in the cluster Cj is equivalent

to demand that the overlap between the two minima is the corresponding

overlap scale qj (see Figure b.1). Pgs(ugs, σgs, k + 1;u′gs, σ
′
gs, j|γ̃; ū∅, σ̄∅) is

then the joint probability that among all the states of the system, the

minimum at γ̃ = 0 is found in the cluster Ck+1 and takes the values (ugs, σgs),

90



and that the minimum at γ̃ > 0 is found in the cluster Cj , with energy u′gs

and stress σ′gs; explicitly, it can be written as

Pgs(ugs, σgs, k + 1;u′gs, σ
′
gs, j|γ̃; ū∅, σ̄∅) =

=

∫
du1 · · · duk+1 dσ1 · · · dσk+1 Pcluster [{u, σ}| γ̃; ū∅, σ̄∅]×

× δ(uk+1 = ugs) δ(σk+1 = σgs) δ(uj = u′gs) δ(σj = σ′gs)×

×
k+1∏

i=1
i 6=k+1

θ(ui > ugs)

k+1∏

i=1
i 6=j

θ(ui − γ̃σi > u′gs − γ̃σ′gs). (b.13)

In this equation we have integrated out all the clusters’ minima, constrained

in such a way that the minima in Ck+1 and Cj assume the desired values; the

last products are the conditions for the two states being global minima, at

different values of the perturbation γ̃: the first asserts that the unperturbed

ground state has the lowest internal energy ugs; the second asserts that at γ̃

the total energy u′gs − γ̃σ′gs is minimum.

Plugging this formula into the former one and integrating the delta functions

when possible we find

Pmin(∆u,∆σ, qj |γ̃; ū∅, σ̄∅) =

=

∫
du1 · · · duk+1 dσ1 · · · dσk+1 Pcluster [{u, σ}| γ̃; ū∅, σ̄∅]×

× δ(uj − uk+1 = ∆u) δ(σj − σk+1 = ∆σ)×

×
k+1∏

i=1
i 6=k+1

θ(ui > uk+1)

k+1∏

i=1
i 6=j

θ(ui − γ̃σi > uj − γ̃σj). (b.14)

We can simplify this expression a little by changing integration variables,

writing each variable relatively to the unperturbed ground state in Ck+1:

ui → uk+1 + ∆ui, σi → σk+1 + ∆σi. Of course the variables uk+1 and

σk+1 are not shifted, but we introduce nonetheless the variables ∆uk+1 and

∆σk+1; in this way, the set of all energies and stresses {u, σ} can be written

as {uk+1 + ∆u, σk+1 + ∆σ}. At this point we use equation (b.2) to show that
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Pcluster [{uk+1 + ∆u, σk+1 + ∆σ}| γ̃; ū∅, σ̄∅] =

=

∫
dū2 · · · dūk+1 dσ̄2 · · · dσ̄k+1

[
k∏

i=1

λ̃i [(ūi, σ̄i)→ (ūi+1, σ̄i+1)]

]
×

×
[
k+1∏

i=1

pi(uk+1 + ∆ui, σk+1 + ∆σi|ūi, σ̄i; γ̃)

]
=

=

∫
dū2 · · · dūk+1 dσ̄2 · · · dσ̄k+1 λ̃1(ū2 − ū∅, σ̄2 − σ̄∅)×

×
[
k∏

i=2

λ̃i(ūi+1 − ūi, σ̄i+1 − σ̄i)
]
p1(uk+1 + ∆u1 − ū∅, σk+1 + ∆σ1 − σ̄∅)×

×
[
k+1∏

i=2

pi(uk+1 + ∆ui − ūi, σk+1 + ∆σi − σ̄i)
]

=

=

∫
dû2 · · · dûk+1 dσ̂2 · · · dσ̂k+1 λ̃1(û2 − ū∅ + uk+1, σ̂2 − σ̄∅ + σk1)×

×
[
k∏

i=2

λ̃i(ûi+1 − ûi, σ̂i+1 − σ̂i)
]
p1(∆u1 − ū∅ + uk+1,∆σ1 − σ̄∅ + σk+1)×

×
[
k+1∏

i=2

pi(∆ui − ûi,∆σi − σ̂i)
]

=

= Pcluster [{∆u,∆σ}| γ̃; ū∅ − uk+1, σ̄∅ − σk+1]. (b.15)

(At first, we have shown the dependence of λ̃1 and p1 on the root variables

ū∅, σ̄∅, and we have explicitly shown the fact that all the functions depend on

the variables’ differences; then, we have shifted all the integration variables).

In practice equation (b.15) says that we can set the ground state energy and

stress to zero by shifting the root energy and stress, which will turn out to

be irrelevant for the scope of our calculations.
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Performing the change of variables ui → uk+1 + ∆ui, σi → σk+1 + ∆σi, intro-

ducing δ(∆uk+1) and δ(∆σk+1), and using equation (b.15), the distribution

(b.14) becomes

Pmin(∆u,∆σ, qj |γ̃; ū∅, σ̄∅) =

∫
d∆u1 · · · d∆uk+1 d∆σ1 · · · d∆σk+1×

×
∫

duk+1 dσk+1 Pcluster [{∆u,∆σ}| γ̃; ū∅ − uk+1, σ̄∅ − σk+1]×

× δ(∆uk+1) δ(∆σk+1) δ(∆uj −∆u) δ(∆σj −∆σ)×

×
k+1∏

i=1
i 6=k+1

θ(∆ui > 0)
k+1∏

i=1
i 6=j

θ(∆ui − γ̃∆σi > ∆u− γ̃∆σ). (b.16)

That, in the end, can be written as

Pmin(∆u,∆σ, qj |γ̃) =

=

∫
d∆u1 · · · d∆uk+1 d∆σ1 · · · d∆σk+1 δ(∆uk+1) δ(∆σk+1)×

× δ(∆uj −∆u) δ(∆σj −∆σ)
k+1∏

i=1
i 6=j

θ(∆ui − γ̃∆σi > ∆u− γ̃∆σ)×

× Pcluster [{∆u,∆σ}| γ̃], (b.17)

where we have defined

Pcluster [{∆u,∆σ}| γ̃] ≡

≡
∫

duk+1 dσk+1 Pcluster [{∆u,∆σ}| γ̃;−uk+1,−σk+1] (b.18)

Deriving equation (b.17) we have proven what was already fairly intuitive; it

roughly says that the new ground state is the minimum among all the clusters’

minima. Notice that the distribution (b.17) does no longer depend on the

root variables ū∅, σ̄∅, that vanish when integrating over uk+1, σk+1 in (b.18),

since in (b.15) they only appeared in the differences ū∅ − uk+1, σ̄∅ − σk+1.

In (b.17) we have not written any of the functions θ(∆ui > 0) that appeared

in (b.16): this is because, to lighten the notation, from now on we are going

to assume that the variables {∆ui} are always positive — they are indeed

the energy gaps above the unperturbed ground state.

Computation of the cluster probability

We can now compute Pcluster [{∆u,∆σ}| γ̃] explicitly, starting from (b.2) and

(b.18); in the following computation we rename the integration variables
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uk+1, σk+1 to ugs, σgs, to avoid confusion with the other indices:

Pcluster [{∆u,∆σ}| γ̃] =

∫
dugs dσgs

∫
dū2 · · · dūk+1 dσ̄2 · · · dσ̄k+1×

×
[
k∏

i=2

λ̃i(ūi+1 − ūi, σ̄i+1 − σ̄i)
] [

k+1∏

i=2

pi(∆ui − ūi,∆σi − σ̄i)
]
×

× λ̃1(ū2 + ugs, σ̄2 + σgs) p1(∆u1 + ugs,∆σ1 + σgs). (b.19)

We can write explicitly pk+1 as a product of two delta functions, as in (b.4).

If we rename ugs → −ū1 and σgs → −σ̄1, we can absorb the corresponding

terms inside the previous products of λ̃’s and p’s:

Pcluster [{∆u,∆σ}| γ̃] =

∫
dū1 · · · dūk+1 dσ̄1 · · · dσ̄k+1×

×
[
k∏

i=1

λ̃i(ūi+1 − ūi, σ̄i+1 − σ̄i)
] [

k∏

i=1

pi(∆ui − ūi,∆σi − σ̄i)
]
×

× δ(∆uk+1 − ūk+1) δ(∆σk+1 − σ̄k+1). (b.20)

Keeping in mind that our goal is to compute equation (b.17), where everything

is multiplied by the two delta functions δ(∆uk+1)δ(∆σk+1), we can simplify

(b.20) and set those variables to 0; then we can integrate also the term

δ(∆uk+1 − ūk+1) δ(∆σk+1 − σ̄k+1) = δ(0 − ūk+1) δ(0 − σ̄k+1), whose only

effect is to set to 0 the variables ūk+1, σ̄k+1 that appear in the intensity λ̃k:

Pcluster [{∆u,∆σ}| γ̃] =

∫
dū1 · · · dūk dσ̄1 · · · dσ̄k×

×
[
k∏

i=1

λ̃i(ūi+1 − ūi, σ̄i+1 − σ̄i)
] [

k∏

i=1

pi(∆ui − ūi,∆σi − σ̄i)
]
. (b.21)

(The terms ūk+1, σ̄k+1 inside λk are both 0 and are kept just for ease of

notation).

It is easier to deal with this integral if we manage to decouple energies and

stresses. To achieve this we will split each function λ̃i into its exponential,

energy dependent intensity λi and its Gaussian, stress dependent component

µ, as in (b.3). The functions {pi} can also be decomposed; from (b.9) we

can define

pi(u, σ) = λi(u)µi(σ) eγ̃fiσ ξi(u− γ̃σ), (b.22)

where λi is the usual exponential intensity, µi(σ) is a zero-mean Gaussian

distribution with variance (k + 1− i)∆q ≈ 1− qi (in the large k limit), and
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ξi(x) = ci exp
[
− ci
yi
eyix

]
. Consequently, the joint probability for the clusters’

minima becomes

Pcluster [{∆u,∆σ}| γ̃] ∝

∝
∫ [ k∏

i=1

dσ̄i

] [
k∏

i=1

µ(σ̄i+1 − σ̄i) eγ̃fi(∆σi−σ̄i) µi(∆σi − σ̄i)
]
×

×
∫ [ k∏

i=1

dūi

] [
k∏

i=1

λi(ūi+1 − ūi)λi(∆ui − ūi) ξi(∆ui − ūi − γ̃∆σi + γ̃σ̄i)

]
,

(b.23)

and, writing explicitly the exponential intensities λi:

Pcluster [{∆u,∆σ}| γ̃] ∝
∫
Dkσ̄

[
k∏

i=1

eγ̃fi(∆σi−σ̄i) µi(∆σi − σ̄i)
]
×

×
k∏

i=1

eyi∆ui
∫

dūi e
−(2yi−yi−1)ūi ξi(∆ui − ūi − γ̃∆σi + γ̃σ̄i), (b.24)

where we have introduced a shorthand for the Gaussian integration,
∫
Dkσ̄ ≡∫ [∏k

i=1 dσ̄i

] [∏k
i=1 µ(σ̄i+1 − σ̄i)

]
, and we have defined y0 ≡ 0. Now the

integrals containing the functions ξi can be evaluated exactly, yielding

Pcluster [{∆u,∆σ}| γ̃] ∝
[
k∏

i=1

e−(yi−yi−1)∆ui

]
×

×
∫
Dkσ̄

[
k∏

i=1

µi(σ̄i −∆σi) e
−γ̃(2yi−yi−1+fi)(σ̄i−∆σi)

]
∝

∝
[
k∏

i=1

e−(yi−yi−1)∆ui

]
×

×
∫
Dkσ̄

[
k∏

i=1

µi(σ̄i −∆σi + γ̃(2yi − yi−1 + fi)(k + 1− i)∆q)
]
. (b.25)

Let us call zi ≡ (2yi − yi−1 + fi)(k + 1− i)∆q; plugging in the definition of

fi (b.9), we have that

zi = (k + 1− i)(yi − yi−1)∆q + ∆q

k∑

j=i

yi ≈ (1− qi) ∆yi + Y (qi), (b.26)

where we have defined Y (q) ≡
∫ 1
q dq′ y(q′) (we recall that ∆yi = yi − yi−1,

y0 ≡ 0). This formula of course is valid for large k.
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Therefore the normalized joint distribution is

Pcluster [{∆u,∆σ}|γ̃] =

∫
Dkσ̄

k∏

i=1

∆yi e
∆yi∆ui µi(σ̄i −∆σi + γ̃zi). (b.27)

Avalanche distribution for the total energy

After computing Pcluster we want to go on with the calculation of the distribu-

tion Pmin of finding the new ground state at overlap qi with the unperturbed

one, and with a difference in energy and stress equal to ∆u and ∆σ, respec-

tively. We can now integrate (b.17), finding

Pmin(∆u,∆σ, qi|γ̃) ≡

≡
∫ 


k+1∏

j=1, j 6=i
d∆ujd∆σj θ (∆uj − γ̃∆σj > ∆u− γ̃∆σ)


×

× δ(∆uk+1) δ(∆σk+1)Pcluster [{∆u,∆σ}|γ̃] =

= δi,k+1δ(∆u)δ(∆σ)

∫
Dkσ̄

k∏

j=1

χj(0; σ̄j) + (1− δi,k+1) θ(∆u− γ̃∆σ < 0)×

×
∫
Dkσ̄∆yi e

−∆yi∆u µi(σ̄i −∆σ + γ̃zi)
k∏

j=1, j 6=i
χj(∆u− γ̃∆σ; σ̄j), (b.28)

where δi,k+1 is the Kronecker delta. Notice that contrary to (b.17) we have

not written the delta functions fixing ∆uj = ∆u and ∆σj = ∆σ: this is

implicitly done when we skip the integration over ∆uj ,∆σj in (b.28). The

auxiliary functions χi(s; σ̄i) are defined as (after neglecting O(γ̃2) terms)

χi(s; σ̄i) ≡

≡
∫ ∞

0
d∆u

∫ ∞

−∞
d∆σ θ(∆u− γ̃∆σ > s) ∆yi e

−∆yi∆u µi(σ̄i −∆σ + γ̃zi) =

= H

(
− |γ̃|∆yi

√
1− qi −

s/ |γ̃|+ σ̄i · sign(γ̃) + |γ̃|Y (qi)√
1− qi

)
+

+ H

(
s/ |γ̃|+ σ̄i · sign(γ̃) + |γ̃|Y (qi)√

1− qi

)
e−|γ̃|∆yi [s/|γ̃|+σ̄i·sign(γ̃)+|γ̃|Y (qi)].

(b.29)

We define the function H(x) as the complementary error function

H(x) ≡ 1

2
erfc

(
− x√

2

)
≡
∫ x

−∞

dt√
2π
e−

t2

2 . (b.30)
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It is important that these functions χi essentially do not depend on the sign

of the perturbation γ̃. The only terms where the sign of γ̃ (sign(γ̃)) appears

are those that multiply σ̄i, but since the integral
∫
Dkσ̄ is invariant if we

invert the signs of all the {σ̄i} we can absorb sign(γ̃) and regard the χi as

even functions of the perturbation.

From this object we can extract the distributions of jumps in the total energy,

as the distribution of ∆e ≡ ∆u− γ̃∆σ; this distribution is

P(∆e|γ̃) ≡

≡
k+1∑

i=1

∫ ∞

0
d∆u

∫ ∞

−∞
d∆σ δ (∆u− γ̃∆σ −∆e) Pmin(∆u,∆σ, qi|γ̃) ≡

≡ δ(∆e)
∫
Dkσ̄

k∏

j=1

χj(0; σ̄j) + θ(∆e < 0)

∫
Dkσ̄

∑

i

k∏

j=1, j 6=i
χj(∆e; σ̄j)×

×
∫ ∞

0
d∆u

∫ ∞

−∞
d∆σ δ(∆u− γ̃∆σ −∆e) ∆yi e

−∆yi∆u µi(σ̄i −∆σ + γ̃zi).

(b.31)

Since the last integral is exactly −∂∆eχi(∆e;σi) we can write the distribution

of the jump ∆e between the new ground state and the unperturbed one as

P(∆e|γ̃) ≡ δ(∆e)R(0|γ̃) − θ(∆e < 0) ∂∆eR(∆e|γ̃), (b.32)

The function R is defined as

R(∆e|γ̃) ≡ lim
k→∞
k∆q→1

∫
Dkσ̄

k∏

i=1

χj(∆e; σ̄i) ≡

≡ lim

∫
Dkσ̄

{
1− |γ̃|∆q

∑

i

y′(qi)
√

1− qi ρ̃
(

∆e/ |γ̃|+ σ̄i + |γ̃|Y (qi)√
1− qi

)}
.

(b.33)

The last expression is found setting ∆yi ≡ y′(qi)∆q in the functions χi,

and then expanding them for small ∆q. We have also defined ρ̃(x) ≡
(2π)−

1
2 e−

x2

2 + x H(x). We want to stress that the whole probability distribu-

tion (b.32) does not depend on the sign of the shear strain γ̃ (this property

is inherited from the functions χi through R); for this reason, in general

there will be a cusp at γ̃ = 0. Since we are interested in the case |γ̃| � 1
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(and |∆e| ∼ O(|γ̃|) or smaller) we can write

R(∆e|γ̃) =

= lim

{
1− |γ̃|∆q

∑

i

y′(qi)
√

1− qi
∫
Dkσ̄ ρ̃

(
∆e/ |γ̃|+ σ̄i + |γ̃|Y (qi)√

1− qi

)}
≡

≡ exp

{
− |γ̃|

∫
dq y′(q)

√
1− q ρ

(
∆e/ |γ̃|+ |γ̃|Y (q)√

1− q

)}
. (b.34)

The function ρ(x) is the average of ρ̃(x) over the Gaussian process introduced

in (b.24):

ρ(x) ≡
∫

dσ̄k · · · dσ̄1 µ(σ̄k)µ(σ̄k − σ̄k−1) · · ·µ(σ̄i+1 − σ̄i)×

× ρ̃
(
x+

σ̄i√
1− qi

)
µ(σ̄i − σ̄i−1) · · ·µ(σ̄2 − σ̄1) =

=

∫
dσ̄k · · · dσ̄i µ(σ̄k)µ(σ̄k − σ̄k−1) · · ·µ(σ̄i+1 − σ̄i) ρ̃

(
x+

σ̄i√
1− qi

)
=

=

∫
dσ̄i

e
− σ̄2

i
2(1−qi)√

2π(1− qi)
ρ̃

(
x+

σ̄i√
1− qi

)
=

∫
dσ

e−
σ2

2√
2π

ρ̃(x+ σ). (b.35)

The last equality is due to the integration over k + 1− i Gaussians with the

same variance ∆q, resulting in a Gaussian with variance (k+1−i)∆q ≡ 1−qi.
Since ∂xρ(x) = (2π)−

1
2

∫
dσ e−

1
2
σ2
∂xρ̃(x + σ) and ∂xρ̃(x) = H(x) one can

show that ρ(x) = 2(4π)−
1
2 e−

1
4
x2

+ x H
(
x√
2

)
(see [Ng and Geller, 1969],

paragraph 4.3, equation (13)).

Asymptotic behavior

We have computed the distribution of total energy jumps when a small shear

strain γ̃ is applied to the system. The probability of not jumping (i.e. the

probability that the original ground state is still the global minimum in the

total energy landscape) is given by

P(∆e = 0|γ̃) = R(0|γ̃) ≡ exp

{
− |γ̃|

∫
dq y′(q)

√
1− q ρ

( |γ̃|Y (q)√
1− q

)}
,

(b.36)

and since the function ρ(x) is positive and increasing and |γ̃|Y (q)√
1−q is positive

for any q,

P(∆e = 0|γ̃) < exp

{
− |γ̃| ρ(0)

∫
dq y′(q)

√
1− q

}
. (b.37)
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This implies that whenever the exponent in the right hand side diverges, the

system always jumps. For a more detailed discussion on the probability of

not jumping, see Asymptotic behavior in Chapter 2.

When the function y(q) diverges as (1− q)−µ near q = 1 (with µ ≥ 1
2), the

jump distribution becomes critical. The probability of a jump is

P(∆e|γ̃) = −∂∆ee
logR(∆e|γ̃) = −∂∆e logR(∆e|γ̃) · R(∆e|γ̃), (b.38)

and

− ∂∆e logR(∆e|γ̃) =

∫
dq y′(q) ρ′

(
∆e/ |γ̃|+ |γ̃|Y (q)√

1− q

)
≈

≈
|γ̃|�1

∫
dq y′(q) ρ′

(
∆e

|γ̃| √1− q

)
. (b.39)

This integral is dominated by the divergence in q = 1 of the function

y′(q)
√

1− q; the convergence is guaranteed by

ρ′
(

∆e/ |γ̃|√
1− q

)
=

∫
dσ√
2π

e−
σ2

2 H

(
σ +

∆e

|γ̃| √1− q

)
≡ H

(
∆e√

2 |γ̃| √1− q

)
.

(b.40)

The last equality can be proven using formula (13) in [Ng and Geller, 1969],

paragraph 4.3. This term is exponentially small when q ≈ 1 because ∆e < 0

and H(x)→ 0 as x→ −∞. As |∆e/γ̃| gets smaller, the integrand develops

an increasing peak close to q = 1; the leading behavior in ∆e/γ̃ can be

extracted as follows:

− ∂∆e logR(∆e|γ̃) ∼
∫

dq (1− q)−µ H

(
− |∆e|√

2 |γ̃| √1− q

)
∼

∼
∣∣∣∣
∆e

γ̃

∣∣∣∣
−2µ ∫ ∞

|∆e/γ̃|
dξ ξ2µ−1 H

(
− ξ√

2

)
∼
∣∣∣∣
∆e

γ̃

∣∣∣∣
−2µ

. (b.41)

Then, upon integration we find the asymptotic behavior of R(∆e|γ̃) and,

finally, of the whole distribution

P(∆e|γ̃) = −∂∆e logR(∆e|γ̃) · R(∆e|γ̃) ∼

∼





∣∣∣∆eγ̃
∣∣∣
−2µ

exp

{
−const · |γ̃|

∣∣∣∆eγ̃
∣∣∣
−2µ+1

}
, µ > 1

2 ,

∣∣∣∆eγ̃
∣∣∣
−2µ+const·|γ̃|

=
∣∣∣∆eγ̃
∣∣∣
−1+const·|γ̃|

, µ = 1
2 .

(b.42)
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The distribution is different in the two cases µ = 1
2 and µ > 1

2 because in the

former the integration of logR(∆e|γ̃) gives rise to logarithmic corrections,

that in the end result in a linear contribution O(γ̃) in the power-law exponent

−2µ ≡ −1. Thanks to this correction, the power-law is integrable near

∆e = 0. For µ > 1
2 the distribution is integrable in the origin as well, because

the exponential term suppresses the divergent power when |∆e| � |γ̃|1+ 1
2µ−1 .

We have thus proven that the distribution of jumps in the total energy ∆e < 0

is a power law P(∆e|γ̃) ∼
∣∣∣∆eγ̃
∣∣∣
−2µ

when |γ̃|1+ 1
2µ−1 � |∆e| � |γ̃| � 1.

In the main text we have written these last formulae with the substitution

γ̃ →
√
Nγ.

Distribution of other observables

Starting from (b.28) it is possible to compute the leading behavior of the

distribution of the jumps in the stress ∆σ, in the energy ∆u and in the

overlap q. We cannot compute these quantities exactly, but we can write

the Taylor expansion for small γ̃; in general the Taylor expansion will not

be valid for small jumps. For instance, Taylor expanding the distribution

(b.42) (say, for µ > 1
2), we find that P(∆e|γ̃) ≈

∣∣∣∆eγ̃
∣∣∣
−2µ

, yielding the correct

power law exponent, but losing the information regarding the lower cutoff.

This happens because in the point ∆e = 0 the distribution has an essential

singularity and it is not analytic.

Working only with the probability density of finite jumps (that is, neglecting

the delta contribution of not jumping) in (b.28), and for small γ̃, we can

write

P(∆u,∆σ, q) = θ(∆u− γ̃∆σ < 0)y′(q)×

×
∫
Dkσ̄µ(σ̄q − Σ; 1− q)R(∆u− γ̃∆Σ; {σ̄}). (b.43)

Integrating out the energy and the stress, and keeping only the first order in
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γ̃, we find the leading behavior of the distribution of stress jumps:

P(∆σ) =

∫
dq y′(q)

∫
Dkσ̄µ(σ̄q −∆σ; 1− q)

∫ 0

−γ∆σ
dxR(x; {σ̄}) ≈

≈ γ̃θ(∆σ)∆σ

∫
dq y′(q)µ(∆σ; 2(1− q)) ∼

∼ γ̃θ(∆σ)∆σ

∫
dq (1− q)−µ−1 e

− ∆σ2

4(1−q)
√

4π(1− q)
=

= γ̃θ(∆σ)∆σ−2µ

∫ ∞

∆σ2
dt e−ttµ−

1
2 ∼ γ̃∆σ−2µ. (b.44)

With a similar reasoning we find the distribution of the energy jumps ∆u:

P(∆u) =

∫
dq y′(q)

∫
Dkσ̄

∫ ∞

0
dxµ(x+ σ̄q −∆u/γ̃; 1− q)R(γ̃x; {σ̄}) ≈

≈
∫

dq y′(q)

∫
Dkσ

∫ ∞

0
dxµ(x+ σ̄q −∆u/γ̃; 1− q) =

=

∫
dq y′(q)

∫ ∞

0
dxµ(x−∆u/γ̃; 2(1− q)) ≡

∫
dq y′(q)H(− ∆u

γ̃
√

1− q ) ∼

=

∣∣∣∣
∆u

γ̃

∣∣∣∣
2 ∫ 1

(∆u/γ̃)2

dt tµ−1H(−
√
t) ∼

∣∣∣∣
∆u

γ̃

∣∣∣∣
−2µ

. (b.45)

Finally, the leading behavior of the distribution of overlaps between the

unperturbed ground state and the new one is

P(∆u) = y′(q)

∫
Dkσ̄

∫ ∞

0
d∆σ µ(σ̄q −∆σ; 1− q)

∫ 0

−γ̃∆σ
dxR(x; {σ̄}) ≈

≈ γ̃y′(q)
∫ ∞

0
d∆σ µ(∆σ; 2(1− q)) = γ̃y′(q)

√
1− q
π

. (b.46)

We can also compute the order of the moments — with respect to γ̃ — of

the jumps in all the observables. Starting from the formula (b.28) we can

easily write (for n > 0)

〈|∆e|n〉 = γ̃n+1

∫
Dkσ̄

∫
dq y′(q)×

×
∫ ∞

0
d∆σ µ(σ̄q −∆σ; 1− q)

∫ 0

−∆σ
dx (−x)nR(γ̃x; {σ̄}), (b.47)
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〈∆σn〉 = γ̃

∫
Dkσ̄

∫
dq y′(q)×

×
∫ ∞

0
d∆σ∆σnµ(σ̄q −∆σ; 1− q)

∫ 0

−∆σ
dxR(γ̃x; {σ̄}), (b.48)

〈qn〉 = γ̃

∫
Dkσ̄

∫
dq y′(q)qn×

×
∫ ∞

0
d∆σ µ(σ̄q −∆σ; 1− q)

∫ 0

−∆σ
dxR(γ̃x; {σ̄}). (b.49)

Recalling equation (b.33), we see that in the end

〈|∆e|n〉 ∼ O(γ̃n+1), (b.50)

〈∆σn〉 ∼ O(γ̃), (b.51)

〈qn〉 ∼ O(γ̃). (b.52)

We can also write the moments of the observables with the correct factors

N , i.e. with γ̃ = γ
√
N , ∆u = ∆U (the extensive term does not contribute to

the jump), ∆σ = N−
1
2 ∆Σ and ∆e = ∆u− γ̃∆σ = ∆U − γ∆Σ = ∆E:

〈
|∆E|k

〉
∼ O(N

k+1
2 γk+1), (b.53)

〈
∆Σk

〉
∼ O(N

k+1
2 γ), (b.54)

〈
qk
〉
∼ O(

√
Nγ). (b.55)
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Arévalo, R. and Ciamarra, M. P. (2014). Size and density avalanche scaling

near jamming. Soft Matter, 10(16):2728–2732.

Arguin, L.-P. (2007). Spin glass computations and ruelle’s probability cas-

cades. Journal of Statistical Physics, 126(4-5):951–976.

Atkinson, S., Stillinger, F. H., and Torquato, S. (2013). Detailed character-

ization of rattlers in exactly isostatic, strictly jammed sphere packings.

Physical Review E, 88(6):062208.

Berthier, L. and Biroli, G. (2011). Theoretical perspective on the glass

transition and amorphous materials. Reviews of Modern Physics, 83(2):587.

Biroli, G. (2007). Jamming: A new kind of phase transition? Nature Physics,

3(4):222–223.

Biroli, G. and Urbani, P. (2016). Breakdown of elasticity in amorphous solids.

Nature physics, 12:11301133.

Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P. (2006).

Structural relaxation made simple. Physical review letters, 97(17):170201.

Castellani, T. and Cavagna, A. (2005). Spin-glass theory for pedestrians. Jour-

nal of Statistical Mechanics: Theory and Experiment, 2005(05):P05012.

Cavagna, A. (2009). Supercooled liquids for pedestrians. Physics Reports,

476(4):51–124.

Charbonneau, P., Corwin, E. I., Parisi, G., Poncet, A., and Zamponi, F.

(2016). Universal non-debye scaling in the density of states of amorphous

solids. Physical review letters, 117(4):045503.

Charbonneau, P., Corwin, E. I., Parisi, G., and Zamponi, F. (2012). Universal

microstructure and mechanical stability of jammed packings. Physical

review letters, 109(20):205501.

105



Charbonneau, P., Corwin, E. I., Parisi, G., and Zamponi, F. (2015). Jamming

criticality revealed by removing localized buckling excitations. Phys. Rev.

Lett., 114:125504.

Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., and Zamponi, F.

(2014a). Exact theory of dense amorphous hard spheres in high dimension.

iii. the full replica symmetry breaking solution. Journal of Statistical

Mechanics: Theory and Experiment, 2014(10):P10009.

Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., and Zamponi, F.

(2014b). Fractal free energy landscapes in structural glasses. Nature

communications, 5:3725.

Combe, G. and Roux, J. (2000). Strain versus stress in a model granular

material: a devil’s staircase. Physical Review Letters, 85(17):3628.

De Dominicis, C. and Giardina, I. (2006). Random fields and spin glasses: a

field theory approach. Cambridge University Press.

Debenedetti, P. G. and Stillinger, F. H. (2001). Supercooled liquids and the

glass transition. Nature, 410(6825):259.

DeGiuli, E., Lerner, E., Brito, C., and Wyart, M. (2014). The distribution of

forces affects vibrational properties in hard sphere glasses. arXiv preprint

arXiv:1402.3834.

Derrida, B. (1980). Random-energy model: Limit of a family of disordered

models. Physical Review Letters, 45(2):79.

Derrida, B. (1981). Random-energy model: An exactly solvable model of

disordered systems. Physical Review B, 24(5):2613.

Dubey, A. K., Procaccia, I., Shor, C. A. B. Z., and Singh, M. (2016). Elasticity

in amorphous solids: nonlinear or piecewise linear? Physical review letters,

116(8):085502.

Fiocco, D., Foffi, G., and Sastry, S. (2013). Oscillatory athermal quasistatic

deformation of a model glass. Physical Review E, 88(2):020301.

Franz, S., Gradenigo, G., and Spigler, S. (2016). Random-diluted triangular

plaquette model: Study of phase transitions in a kinetically constrained

model. Physical Review E, 93(3):032601.

Franz, S., Mezard, M., Parisi, G., and Peliti, L. (1999). The response of

glassy systems to random perturbations: A bridge between equilibrium

and off-equilibrium. Journal of statistical physics, 97(3):459–488.

106



Franz, S. and Parisi, G. (2000). Non trivial overlap distributions at zero

temperature. The European Physical Journal B-Condensed Matter and

Complex Systems, 18(3):485–491.

Franz, S. and Parisi, G. (2016). The simplest model of jamming. Journal of

Physics A: Mathematical and Theoretical, 49(14):145001.

Franz, S., Parisi, G., Sevelev, M., Urbani, P., and Zamponi, F. (2017).

Universality of the sat-unsat (jamming) threshold in non-convex continuous

constraint satisfaction problems. arXiv preprint arXiv:1702.06919.

Franz, S., Parisi, G., Urbani, P., and Zamponi, F. (2015). Universal spectrum

of normal modes in low-temperature glasses. Proceedings of the National

Academy of Sciences, 112(47):14539–14544.

Gardner, E. (1985). Spin glasses with p-spin interactions. Nuclear Physics

B, 257:747–765.

Hentschel, H., Karmakar, S., Lerner, E., and Procaccia, I. (2011). Do

athermal amorphous solids exist? Physical Review E, 83(6):061101.

Jaiswal, P. K., Procaccia, I., Rainone, C., and Singh, M. (2016). Mechanical

yield in amorphous solids: a first-order phase transition. Physical review

letters, 116(8):085501.

Jesi, M. B. (2015). Criticality and energy landscapes in spin glasses.

Karmakar, S. and Parisi, G. (2013). Random pinning glass model. Proceedings

of the National Academy of Sciences, 110(8):2752–2757.

Kirkpatrick, T. and Thirumalai, D. (1987a). Dynamics of the structural

glass transition and the p-spininteraction spin-glass model. Physical review

letters, 58(20):2091.

Kirkpatrick, T. and Thirumalai, D. (1987b). p-spin-interaction spin-glass

models: Connections with the structural glass problem. Physical Review

B, 36(10):5388.

Kirkpatrick, T. and Thirumalai, D. (2012). Random first-order phase tran-

sition theory of the structural glass transition. Structural Glasses and

Supercooled Liquids: Theory, Experiment, and Applications, page 223.

Kirkpatrick, T. and Thirumalai, D. (2014). Universal aspects of the random

first order phase transition theory of the structural glass transition. arXiv

preprint arXiv:1401.2024.

107



Kirkpatrick, T., Thirumalai, D., and Wolynes, P. G. (1989). Scaling concepts

for the dynamics of viscous liquids near an ideal glassy state. Physical

Review A, 40(2):1045.

Kirkpatrick, T. and Wolynes, P. (1987). Connections between some ki-

netic and equilibrium theories of the glass transition. Physical Review A,

35(7):3072.

Kobayashi, H. and Yamamoto, R. (2011). Implementation of lees-edwards

periodic boundary conditions for direct numerical simulations of particle dis-

persions under shear flow. The Journal of chemical physics, 134(6):064110.

Krzakala, F. and Martin, O. C. (2002). Chaotic temperature dependence in

a model of spin glasses. The European Physical Journal B, 28(2):199–208.

Kurchan, J., Parisi, G., Urbani, P., and Zamponi, F. (2013). Exact theory of

dense amorphous hard spheres in high dimension. ii. the high density regime

and the gardner transition. J. Phys. Chem. B, 117(42):pp 1297912994.

Kurchan, J., Parisi, G., and Zamponi, F. (2012). Exact theory of dense

amorphous hard spheres in high dimension i. the free energy. Journal of

Statistical Mechanics: Theory and Experiment, 2012(10):P10012.

Le Doussal, P., Müller, M., and Wiese, K. J. (2012). Equilibrium avalanches

in spin glasses. Phys. Rev. B, 85(21):214402.

Le Doussal, P. and Wiese, K. (2009). Size distributions of shocks and static

avalanches from the functional renormalization group. Physical Review E,

79(5):051106.

Lees, A. and Edwards, S. (1972). The computer study of transport processes

under extreme conditions. Journal of Physics C: Solid State Physics,

5(15):1921.

Leishangthem, P., Parmar, A., and Sastry, S. (2016). The yielding transition

in amorphous solids under oscillatory shear deformation. arXiv preprint

arXiv:1612.02629.
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Mézard, M., Parisi, G., Virasoro, M. A., and Thouless, D. J. (2008). Spin

glass theory and beyond. Physics Today, 41(12):109–110.

109
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Abstract

Many  systems  that  are  somehow
characterized by a degree of disorder share a
similar  structure:  the  energy  landscape  has
many sample-dependent  local  energy minima.
When a small external perturbation is applied to
the system at low temperature, it is reasonable
to expect that the dynamics will lead the system
from a minimum to another,  thus displaying a
random and jerky response. The discontinuous
jumps that one observes are called avalanches,
and the focus of this work is the computation of
their  distribution.  One of  the results  is  indeed
the development of a framework that allows the
computation  of  this  distribution  in  infinite-
dimensional  systems  that  can  be  described
within a replica symmetry breaking ansatz. We
apply the results to one of the simplest models
of structural glasses, namely dense packings of
(harmonic) soft spheres, either at jamming or at
larger  densities,  subject  to  a  shear
transformation  that  induces  jumps both  in  the
total  energy  and  in  the  shear  stress  of  the
system. We argue that, when the shear strain is
small  enough,  the  avalanche  distribution
develops  a  power-law  behavior,  whose
exponent  can  be  directly  related  to  the
functional  order  parameter  of  the  replica
symmetry  breaking  solution.  This  exponent  is
also related to the distribution of contact forces
(or at least of the contact forces between some
of the spheres), whose asymptotic behavior is
known  not  to  depend  strongly  on  the  spatial
dimension;  for  this  reason,  we  compare  the
infinite-dimensional  prediction  with  three-
dimensional  simulations  of  the  same  systems
and, remarkably, we find a good agreement. In
the rest  of  the thesis we compare our  results
with previous works, and we also discuss some
of  the  consequences  that  the  avalanche
distribution  leads  to,  concerning  the  statistical
elastic properties of dense granular media.
 

Keywords

Avalanche distribution, jamming, soft 
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Résumé

Beaucoup  de  systèmes  qui  ont  un  certain
degré  de  désordre  ont  des  similarités  dans
leur  structure:  le  paysage  énergétique  est
aléatoire  et  il  a  plusieurs  minima  locaux  de
l’énergie.  Quand  on  ajoute  une  petite
perturbation  externe  au  système  à  basse
température, il est raisonnable d’attendre que la
dynamique conduira le système d’un minimum
à  l’autre,  et  ça  donne  lieu  à  une  réponse
aléatoire  et  saccadée.  Les  sautes  discontinus
que l’on observe sont  appelés  avalanches,  et
l’intérêt  de  ce  travail  est  le  calcul  de  leur
distribution.  Un  des  résultats  est  en  effet  le
développement  d’un  cadre  pour  calculer  cette
distribution  dans  des  systèmes  en  dimension
infinie  qui  peuvent être décrits avec le replica
symmetry  breaking.  Nous  appliquons  les
résultats  à  l’un des  modèles  les plus  simples
des  verres  structuraux,  c’est  à  dire  les
empilements  denses  de  sphères  molles  avec
répulsion  harmonique,  avec  une  déformation
(shear  strain)  du volume comme perturbation.
Nous soutenons que, quand la déformation est
suffisamment  petite,  une  portion  de  la
distribution des avalanches devient  une loi  de
puissance,  dont  l’exposant  peut  être
directement  lié  au  paramètre  d’ordre  de  la
brisure de symétrie de replica. Cet exposant est
également  lié  à  la  distribution  des  forces  de
contact  (au  moins  entre  certaines  sphères),
dont le comportement asymptotique on sais que
ne  dépend  pas  fortement  de  la  dimension
spatiale; pour cette raison nous comparons les
prédictions  de  champ  moyen  en  dimension
infinie  avec des simulation du même système
en  dimension  trois  et,  remarquablement,  on
trouve un bon accord. Dans le reste de la thèse
nous  discutons  aussi  les  similarités  avec  des
travaux  précédents  et  quelques  consquences
que la distribution des avalanches donne sur les
propriétés  élastiques  de  la  matière  granulaire
dense.

Mots Clés

Distribution des avalanches, jamming, 
sphères molles, réponse elastique, shear 
stress
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