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1 Introduction to plaquette models

Glassy dynamics can be found both in models with a complex energy
landscape and hence a non-trivial thermodynamics (e.g. spherical p-spin
model), or in models where the thermodynamics is trivial and the critical
slowing down at low temperatures is only due to constraints in the rules
of microscopic dynamics. In the former case, it is believed that glassiness
is due to a large number of metastable states separated by barriers which
increase as the temperature is lowered, eventually leading to a true ergodicity
breaking transition (e.g. [2]). In the latter scenario, usually referred to as
“dynamical facilitation” scenario, the system is governed by a dynamics
where the allowed moves depend on the state of the neighboring variables
(e.g. [5]): such dynamics can become exponentially slow when available
moves are very rare, that is, when the density of “mobility defects” vanishes.
These models are called Kinetically Constrained Models (KCMs) [7].

Plaquette models (PMs) are lattice models with plaquette (p-spin) in-
teractions between neighboring Ising spin variables lying on the vertices. 1d
Ising is the simplest PM, with 2-spins plaquettes; on a 2d square lattice, for
instance, we can define a ferromagnetic interaction −J

∑

ij sijsi+1jsij+1si+1j+1,
and analogous definitions hold for any regular grid. In this report we only
work on triangular lattices; they can have 3-spins interactions either on ev-
ery triangle (made of neighboring spins) as in the Baxter-Wu model (BWM,
[1]) or on upward-pointing triangles only as in the Newman-Moore model
(NMM, [11]). The BWM does not exhibit glassy behavior, and thus we do
not study it; on the other hand, the NMM is an integrable model which
has a glassy behavior at low temperatures, namely the characteristic time
τ of its relaxational dynamics grows with the super-Ahrrenius behavior
τ ∼ exp(1/2 log 2T 2).

Figure 1: Triangular lattice for the Newman-Moore model. The interacting pla-
quettes are shown as dark gray triangles within the lattice cells.
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The Hamiltonian of this model is

H0 = −J
∑

△

s△(1)s△(2)s△(3) ≡ −J
∑

△

σ△,

where
∑

△ means that the sum is over all upward-pointing triangles and
s△(i) is a spin belonging to the triangle △ (as shown in Fig. 1); the re-
lationship between spin and plaquette variables is bijective (with suitable
boundary conditions on the lattice size). What makes this model interesting
is that the Hamiltonian is ordered, without any randomness or frustration,
and with short-range interactions; furthermore, the statics is exactly solv-
able. At low temperature, this model can be described both as an interacting
spin system and as a system governed by a constrained defect dynamics (in
which 3 neighboring defects are flipped for a single spin flip, [6]). In terms
of plaquette variables, the Hamiltonian is the same as that of a set of non-
interacting spins in a magnetic field, and therefore the partition function is
Z = 2N coshN (βJ), where N is the number of such spins. Clearly this model
has no finite temperature transition, with the only critical point T = 0; the
purpose of our work is to find a perturbation of the Newman-Moore model
which shifts the critical point at T > 0, while leaving almost unchanged the
local dynamics of the model.

Figure 2: Triangular lattice for the generalized NM model. NM and additional
interactions are shown as light gray and dark gray triangles, respectively.
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2 Incommensurable triangular plaquette model

The first perturbation to the Newman-Moore model that we study is
the addition of extra ferromagnetic (triangular) plaquette interactions, as
shown in Fig. 2. Such interactions are of the form

H1 = −J ′
∑′

ij

sijsi+3jsij+3 ≡ −J ′
∑

s (1)s (2)s (3) ≡ −J ′
∑

σ , (1)

where
∑′ means that (i, j) ∈ 3Z2: the indices run on a sublattice whose cells

are three times bigger than the NMM lattice. Each triplet of interacting
spins in H1, namely placed at the vertices of an upward-pointing triangle of
this sublattice 3Z2, in the following will be refered to as big plaquette ( ).

In the beginning, in order to understand the relevance of the pertur-
bation H1, we attempted to prove that the high temperature expansion
of the partition function Z =

∑

{s} e
H0[{s}]+εH1[{s}] was trivial (i.e. sim-

ilar to the one of the NMM but with a different number of plaquettes,

ZHTE = 2N coshN+N
6 (βJ), where N

6 is the number of big plaquettes); look-
ing at the simulations this seemed to be the case. Unfortunately it is not
true, and we will show why in what follows.

If we define c = cosh(βJ), t = tanh(βJ) (in the following εJ ′ = J), the
partition function Z then reads

Z = cN
∑

{s}

eβJ
∑

△
σ△

∏

(1 + tσ ) =

= cN
∑

{s}

eβJ
∑

△
σ△

∑

C

t|C|
∏

∈C

σ =

= Z△cN
∑

C

t|C|

〈

∏

∈C

σ

〉

△

, (2)

where 〈O〉△ = Z−1
△

∑

{s}OeβJ
∑

△
σ△ and C ranges over all possible diagrams

made of big plaquettes, and |C| is the number of big plaquettes in each
diagram. Hence, to prove our thesis, we want to show that for every finite
diagram C the correlation

〈
∏

∈C σ
〉

△
is zero: this is equivalent to say that

within the expression
∏

△(1 + tσ△)
∏

∈C σ there is no closed diagram.

Mapping to a XORSAT problem

It is worth noting that the conditions for the closure of the diagrams can
be expressed as a XORSAT problem: such problem consists in assigning
values to N boolean variables such that they satisfy simultaneously M
linear equations modulo 2. The diagram

∏

∈C σ can be closed if and
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only if there exists at least one diagram L made of small plaquettes such
that

∏

△∈L σ△
∏

∈C σ =
∏

△∈L s△(1)s△(2)s△(3)

∏

∈C s (1)s (2)s (3) =
1, namely each spin appers an even number of times. For the sake of clarity
let us define as IC the set of all spins appearing in

∏

∈C s (1)s (2)s (3).
Then, introducing the variables n△ which are set equal to 1 (0) if △ ∈ L
(△ 6∈ L) and n which are set equal to 1 (0) if ∈ C ( 6∈ C), it is easy to
show that the diagram L ∪ C is closed if and only if the following equation
holds for any site i of the lattice:

∑

△∈L∩∂i

n△ +
∑

∈C∩∂i

n ≡ 0 (mod 2), (3)

where △ ∈ ∂i means that △ contains the spin in vertex i. In particular let
us notice that for every spin i 6∈ IC , we have

∑

∈C∩∂i n ≡ 0 (mod 2).
What (3) actually means is that, given a diagram C mqde of big plaquettes,
it can be closed if and only if we can find a small plaquette diagram such
that the total number of small and big plaquettes around each vertex is even.
With the purpose of proving that this is never possible, we study a game in
which the diagram C is given and the task is to find the values {n△} that
satisfy (3). As a first step, it can be shown that, on an infinite lattice (i.e. in
the thermodynamic limit), n△ has to be 0 for each small plaquette outside
a certain minimum hull containing the diagram C (this minimum hull in
general has a strange shape, but it is always inside the minimal hexagonal
hull containing C).

n△ 1

1 1

1 0 1

1

1 1

1 0 1

... ... n1 n2

n3

Figure 3: In this figure the set C
is made by the four big plaquettes
with thick red borders; note that
the two middle vertices on the
bottom and left borders have not
been marked as the others, since,
being a superposition of two “big
plaquette vertices”, it is not rele-
vant for (3). The light gray area
delimits the minimal hull of C.
Outside of this hull n = 0 for all
the plaquettes because otherwise
we would need an infinite series
of plaquettes with n = 1, but we
are interested only in the case of
finite L.

As example, let us consider the diagram C in Fig. 3. Our task is to find
the values n△ which satisfy Eq. (3). A possible strategy is to find the values
of the variables n△ starting from the topmost row and then to use Eq. (3) to
solve the problem row by row moving downward. In order to see how the first
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row can be determined, consider for instance the site i, which is the topmost
left site belonging to the diagram C: given that

∑

∈C∩∂i n ≡ 1 (mod 2)
and that no small plaquette can have n△ = 1 outside the minimum hull
shown in figure, we have to assign n△ = 1 to the plaquette right below i;
the same holds for all the topmost vertices in the diagram. All the small
plaquettes in the first row which do not lie below a vertex of C are fixed to
n△ = 0, because they are outside the minimum hull of Fig.3. Once we have
determined the values in the first row, we can find the values in the next
and the following ones using Eq. (3) and the conditions on the variables
n△ outside the hull: for instance, consider the site between n1, n2n,3 in the
figure; for this vertex Eq. (3) reads n1 + n2 + n3 ≡ 0 (mod 2), which can be
written as n3 ≡ n1 + n2 (mod 2). This clearly shows that the variables in
the next row (the one of n3) can be computed knowing the variables in the
previous one (n1, n2); to compute the variables near the boundary of the
hull it is necessary to consider the fact that outside the hull n△ = 0. In the
end, when we compute the last row, either all the conditions are satisfied or
we find some inconsistency; in the former situation we find the only diagram
of small plaquettes that compensates the diagram C, whereas in the latter
we show that C cannot be closed.

It is also worth noting that such a simple formula as Eq. (3) leads to
the appearance of fractal structures. Suppose, for example, that there is
only one plaquette with n△ = 1, with a triangular hull starting from below
it; then, for each lattice site j the equation reads nbelow j = nabove j,1 +
nabove j,2, and whenever nabove j,1 lies outside the hull it is taken equal to 0
(the same holds for nabove j,2). These relations are the same that define the
Pascal triangle (that of binomial coefficients) modulo 2, which is a fractal
known as the Sierpinski triangle (Fig. 4). This fractal arises from other
considerations: Garrahan and Newman ([6], and [11]) showed that n-spins
correlation functions (w.r.t. the Newman-Moore model) can be written as

〈si1 · · · sin〉 = − (tanh(βJ))Ni1···in , (4)

where Ni1···in is computed in this way: below each vertex ik build a Pascal
triangle modulo 2 – Sierpinski, – then sum (always modulo 2) the values
appearing in the same places; Ni1···in is the number of ones that are left.
This number will usually be infinite: for instance, the single spin average
(w.r.t. the NMM) is 0 at any finite temperature, since the number of odd
numbers in a Pascal triangles is infinite.

The fact that given the variables n△ in a row we can compute the ones in
the next row via Eq. (3) suggests that the problem of finding a set of spins
(lying on the sublattice of the big plaquettes) with non-zero correlation
function in the Newman-Moore model can be interestingly represented as a
one dimensional cellular automata problem. A cellular automaton is a lattice
model in which the value of each cell (1 or 0, alive or dead) at some time step
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t depends on the values of neighboring cells at t − 1; the relation between
our model and cellular automata is due to the fact that the dynamics of an
automaton living in a one-dimensional space can be represented as a process
on a two-dimensional space, in which the second coordinate corresponds to
the time steps. Indeed, the same Eq. (3) (but on square lattices) defines
what is called Rule 90 or Martin-Odlyzko-Wolfram automaton or, for clear
reasons, Sierpinski automaton, [9]; so, in terms of cellular automata, our
problem can be recast as:

Let S0(n) : 3Z → {0, 1} be a function which is 1 if cell n is
alive at the initial time, 0 otherwise; let also {Nt(n)}t>0 be a
collection of functions from Z to {0, 1}, and define the update
rule as St+1(0) = 1, St+1(n+ 1) = St(n) + St(n+ 1) +Nt+1(n+
1) (mod 2). Then, is there any choice of the “perturbation”
functions {Nt(n)} that satisfies the following conditions?

• (n, t) 6∈ 3Z2 =⇒ Nt(n) = 0,

• {n ∈ Z : St(n) = 1} = ∅ at some time t.

Therefore, the problem of finding closed diagrams in the perturbed NMM
can be formulated as the search for a suitable perturbation in the dynamics
of a cellular automaton.

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1

Figure 4: The Sierpinski triangle. In our
problem, it is generated by (3) when there
is a n△ = 1, and provided that outside of
the triangle {n△} are constrained to be 0
(so that the borders have always n = 1).
Note: the Sierpinski triangle appears be-
cause it is equal to the Pascal triangle (bi-
nomial coefficients) modulo 2 – i.e. it’s
parity. Indeed, the Pascal relation mod-
ulo 2 is cn+1,k+1 ≡ cn,k + cn,k+1 (mod 2)
(compare it to (3)). Notice the periodic-
ity of powers of 2: if the big plaquettes
were of size 2 rather than 3, there would
be many small closed diagrams!

An interesting property of multispin correlation functions

Here we discuss a property of multispin correlation functions that may be
useful to find the closure of big plaquette diagrams C in terms of small
plaquettes. First of all, recall that saying that a set of spins S = {si}
has correlation different from 0 means that Z−1

△ coshN△(βJ)
∑

{s}

∏

△(1 +
ts△(1)s△(2)s△(3))

∏

i∈S si 6= 0 (for the sake of clarity we write explicitly
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σ△ = s△(1)s△(2)s△(3)). Rewriting the product as a sum over all diagrams
of plaquettes L, we can write the same condition as

∑

{s}

∑

L

t|L|
∏

△∈L

s△(1)s△(2)s△(3)

∏

i∈S

si 6= 0.

Clearly, the the product of spins in S has non-zero correlation if and only
if one of the sets L is such that it compensates all the spins in S, so that
the term

∏

△∈L s△(1)s△(2)s△(3)

∏

i∈S si = 1. Of course, the correlation is 0
if and only if there is no set L that can compensate the set S.

Now, assume that S⋆ is such a set of spins whose product has correlation
different from 0; then, for any other set of spins S the following property
holds:

〈

∏

i∈S

si

〉

△

= 0 ⇐⇒

〈

∏

i∈S

si
∏

j∈S⋆

sj

〉

△

= 0. (5)

In what follows let L⋆ be the set of plaquettes such that

∏

△∈L⋆

s△(1)s△(2)s△(3)

∏

i∈S⋆

si = 1. (6)

⇐= To prove this, first assume that the correlation of S is not 0:
〈
∏

i∈S si
〉

6=
0. This is equivqlent to sqy thqt there is a set of plaquettes L such
that

∏

△∈L

s△(1)s△(2)s△(3)

∏

i∈S

si = 1. (7)

It is straightforward to see that multiplying (6) and (7) we have

∏

△∈T

s△(1)s△(2)s△(3)

∏

i∈S

si
∏

j∈S⋆

sj = 1.

where T = L⊖L′ = (L∪L⋆)\ (L∩L⋆) is the symmetric set difference
and is such that

∏

△∈T σ△ =
∏

△∈L σ△
∏

△′∈L⋆ σ△′ (we have to use the
symmetric difference instead of the union because for every plaquette
in L ∩ L⋆ σ2

△ = 1, hence double counting actually removes plaquettes
from the product). For what we have said before, this last equation

implies that
〈

∏

i∈S si
∏

j∈S⋆ sj

〉

△
6= 0.

=⇒ Consider now the other case, namely
〈
∏

i∈S si
〉

△
= 0; then, as said

previously, for all sets L it must be that

∏

△∈L

s△(1)s△(2)s△(3)

∏

i∈S

si 6= 1 (8)
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and in particular the product still contains some spins that cannot be
compensated; but then for sure multiplying by (6) – that is, multiply
by 1, – the expression does not change:

∏

△∈T

s△(1)s△(2)s△(3)

∏

i∈S

si
∏

j∈S⋆

sj 6= 1. (9)

where T ≡ L⊖L⋆ as before. To conclude the proof we notice that the
mapping L → T = L⊖L⋆ is a bijection from the set of all collections
of plaquettes to itself, and therefore if (8) holds for all L than (9) does
as well, and (5) is proven.

⊕ ≡

⊕
(twice)

≡

⊕
(twice)

≡

Figure 5: Visual representation of the game: multiplying (i.e. superimposing
“modulo 2”) a non-zero correlation set over another set of spins does not change
the fact that the latter has a correlation equal to 0 or not.

This simple consideration allows us to translate the problem into an-
other “game”. The smallest set of spins with non zero correlation is the
smallest triangle (i.e. the smallest cell of the triangular lattice); imagine
superimposing the topmost vertex of this triangle on every topmost vertex
of a set of big plaquettes, like in Fig. 5: repeating this scheme let us reduce
the initial set to a set of points lying on one line only! Of course, it is very
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easy to show that this set of points has non zero correlation if and only if it
is the empty set (e.g. think of the Sierpinski triangle originating from the
leftmost vertex: its left border will contain an infinite number of 1’s, and
hence the automaton will never die), and we only have to show that a set
of spins belonging to big plaquettes can never be mapped into an empty set
via this transformation.

Partial traces and conclusions

The final attempt to demonstrate that arbitrary correlations of spins belong-

ing to big plaquettes
〈

∏

∈C s (1)s (2)s (3)

〉

△
are zero is based on calcu-

lations with partial traces: the basic idea is to sum the partition function
block by block, as in [12]. It is following this approach that we were able to
prove that, contrary to our expectations, there is a finite diagram C such that
〈

∏

∈C s (1)s (2)s (3)

〉

△
6= 0. In the beginning we wanted to show that

the high temperature expansion was 2N△ coshN△+N (βJ)(1 + corrections),
where the correction terms are not an analytic function in the thermody-
namic limit – if the system undergoes a transition at some temperature, –
and vanish in the high temperature phase. In general, we can write the high
temperature expansion as

Z = 2N△ coshN△+N (βJ)

(

1 +
∑

n>0

cn(N) tanhn(βJ)

)

. (10)

In the thermodynamic limit the non-analiticity due to a possible tran-
sition is entirely contained in the summation, and therefore if in the high
temperature phase (i.e. for β sufficiently small) the partition function is
Z̃ = 2N△ coshN△+N (βJ), the summation in Eq. (10) must sum to zero
in this phase (in the limit N → ∞); notice that given that every term is
positive, each one must be 0 in the thermodynamic limit. In particular, for
each N , let the lowest order term in t ≡ tanh(βJ) with non-zero coefficient
be γ(N)tα(N) (we write explicitly the lattice size dependency – N = N△,
for instance); then it follows that limN→∞ α(N) = ∞. We will show that in
fact there are only two possible cases: the partition function is exactly equal
to Z̃ (but this cannot be true because it would not agree with the numerical
simulations), or α(N) has to be bounded; furthermore, the coefficient γ(N)
(as all the coefficients) scales with N .

Imagine that we compute the partition function
∑

{s} e
βJ(

∑
△

σ△+
∑

σ ) =

coshN△+N (βJ)
∑

{s}

∏

△(1 + tσ△)
∏

(1 + tσ ) — with t = tanh(βJ), —
on a finite square lattice (it actually is a rhombus, because the elementary
cells are triangular), whose side length is a multiple of 3. Of course, apart
from the prefactor coshN△+N (βJ) and a factor 2Nspins due to the summation
over the spins, the partition function is a polynomial P(t) = 1+

∑

n>0 cnt
n;
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now assume that we do not sum over the spins on the last row, that is, we
write

Z ∝ coshN△+N (βJ)
∑

{s}′

P̄(t; {s}′), (11)

where {s}′ refers to the spins in the last row and P̄(t; {s}′) is the polynomial
in t due to the sum over all the previous spins (the proportionality is due to
the fact that we have omitted the power of two generated by the summation
over spins). In particular, the terms in P̄ whose coefficients have some spin
dependancy vanish when the sum in Eq. (11) is performed, and thus all the
terms in P(t) are exactly those in P̄ without spin dependancy (but of course
with a different coeffient, due to the sum); notice that the term 1 is present
here, too. Now, assume that we compute the partition function relative to
the same Hamiltonian, but on a lattice that is twice as big (in the vertical
direction); given that the side length of the lattice was a multiple of 3, the
last row of spins lied on the sublattice of the big plaquettes: this means that
the interactions between the top and the bottom halves in the bigger lattice
involve only spins lying on the bottom half and at most on the last row of
the top one. Hence, we can write the new partition function just adding the
suitable terms in Eq. (11) (and multiplying by the correct powers of 2 and
cosh(βJ)):

Ztwice ∝ cosh2N△+2N (βJ)
∑

{s}′

∑

{s}\{s}′

bottom

P̄(t; {s}′)
∏

△
bottom

(1+tσ△)
∏

bottom

(1+tσ ),

where {s}′ still refers to the last row of top half of the lattice, and “bottom”
refers to plaquette terms due to the addition of lattice sites and, hence,
plaquette interactions. Then, recalling that the polynomial P̄ ≡ 1 + t ¯̄P
starts with 1, we can split the sum as

Ztwice ∝ cosh2N△+2N (βJ)









∑

{s}
bottom

∏

△
bottom

(1 + tσ△)
∏

bottom

(1 + tσ ) +

+
∑

{s}′

∑

{s}\{s}′

bottom

¯̄P(t; {s}′)
∏

△
bottom

(1 + tσ△)
∏

bottom

(1 + tσ )









.

(12)

The key point now is to notice that the first term in Eq. (12), apart from
factors relative to the size of this bigger lattice, is, by definition, the same
as Eq. (11)! This is because the bottom half of the lattice has the same
number of spins and interactions as the top half. Therefore, if P̄ has at
least one term tα without spin dependancy, this same term will be found
also in the new partition function, namely Ztwice (the only differences are
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the powers of the factors 2 and cosh(βJ)); in particular, it follows that the
minimum power of t in Ztwice is less than or equal to the minimum power of
t in Z (because the second term in Eq. (12) might generate new powers of t
without spin dependancy, and these can in principle be of lower order; notice
that being ¯̄P made of positive terms, it cannot generate terms that somehow
cancel tα)! In this case, therefore, the high temperature expansion of the
partition function in the thermodynamic limit cannot be exactly equal to
Z̃ = 2N△ coshN△+N (βJ). There is still the possibility that P̄ has no terms
(except 1) without spin dependancy; in this case there are two possible
scenarios: either the partition function is exactly equal to Z̃ (i.e. not only
its high temperature expansion), or considering a bigger lattice we fall back
in the previous case, that is P̄ has some term different from 1 without spin
dependancy in its coefficient.

From the simulations we know that the partition function cannot be
equal to 2N△ coshN△+N (βJ) without any correction (vanishing in the high
temperature phase), because the low temperature behaviour is different.
This means that the correct high temperature expansion is not equal to Z̃,
but has some corrections; also, Eq. (2) implies that there must be some
finite big plaquette diagram, and the natural question is what is the size of
the smallest diagram. We already know that it cannot be too small; to find
the actual value we performed a Monte Carlo simulation of the XORSAT
problem defined by (3), and we looked for the ground states with a simulated
annealing; the smallest diagram C found is made of 10 big plaquettes and can
be closed with 54 small plaquettes (Fig. 6). Using the property of multispin
correlations functions shown in Section 2 we verified that it actually had a
correlation different from 0 (i.e. we were ablet to transform the diagram
into the empty set). From (2) it follows that the corresponding correction
to the partition function is proportional to N tanh64(βJ) (the coefficient
is due to the fact that we can place this diagram anywhere in the lattice,
and the exponent come from the 10 big plaquettes – t|C| – and from the 54
plaquettes with n△ = 1 needed to compensate the diagram).

The finding of such a closed diagram in the short range incommensu-
rable triangle plaquette model allows us to also say something about the
cellular automata problem explained in the section Mapping to a XORSAT

problem. The answer to that problem is that we can certainly find the per-
turbation functions {Nt(n)}t>0 such that the automaton dies at some finite
time, whatever the initial conditions are. In particular, we can make it die
at t = 12. To build these functions, imagine the space (n, t) as a trian-
gular lattice (e.g. the one in Fig. 1, with n spanning the horizontal axis
and t spanning the top-right to bottom-left diagonal). Then, for any initial
living cell (n0, 0) consider the set P (n0) = {(n0 + 3, 6), (n0 + 3, 9), (n0 +
6, 9), (n0, 12), (n0 + 12, 12)}, which correspond to the set of points of the
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1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 1 1 0 1
1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1
1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1
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Figure 6: The smallest dia-
gram with correlation differ-
ent from 0. It is made of the
10 big plaquettes shown – red
borders, – and due to the su-
perposition of spins (s2 = 1),
it is equal to the correlation
of the 6 circled spins in figure.
Inside each plaquette is writ-
ten the corresponding num-
ber n△, clearly proving that
the cellular automaton dies
in the last (bottom) row.

diagram in Fig. 6 if it were build with (n0, 0) as its topmost vertex; let then
P be the “multiplication” (superposition modulo 2) of all those sets (a point
is in P if and only if it belongs to an odd number of the sets {P (n0)}n0). It
is easy to see that if we choose Nt(n) = 1 for the points (n, t) ∈ P (⊂ 3Z2 be-
cause n0 ∈ 3Z by hypothesis) and 0 otherwise, then the cellular automaton
dies at t = 12.

13



3 Random long range triangular plaquette model

In this section we describe another model that we have been studying.
We consider the Newman-Moore model with the addition of a long range
perturbation: the lattice is the same as the NMM, but we add 3-spin pla-
quette interactions between triplets of spins chosen at random among the
whole set; the Hamiltonian is formally similar to that of the previous model,

H0 + εH1 = −J
∑

△

s△(i)s△(j)s△(k) − εJ
∑

N

sN(i)sN(j)sN(k), (13)

but the second sum is over the random, long range plaquettes (the first
one is the usual NMM Hamiltonian). While the high temperature phase
in the Newman-Moore model is different from the one in the short range
triangular plaquette model, we are motivated to believe that the situation
may be different for the long range Hamiltonian H0 + εH1. We think that
this model is marginal in the sense that as long as ε 6= 0, whatever the value,
the system has a glass transition at a temperature T ⋆(ε) > 0, whereas for
ε = 0 the transition is at zero temperature and the thermodynamics is
trivial. We expect the glass transition to happen at finite temperature for
the analogy of plaquette models with XORSAT problems; as already said,
these problems consist in assigning values to N binary variables, such that
they satisfy M linear equations modulo 2. They have always solution for
N = M , and this is the case corresponding to the NMM, but for M > N it
might not have any solution at all! The analogy between the two problems
is due to the fact that the low temperature excitations of plaquette models
obey modular equations similar to (3), but on spin rather than plaquette
variables.

We study the dynamics of the system either numerically and also ana-
litically by approximating the regular triangular lattice with long range in-
teractions as a model on a Bethe lattice with a topology as close as possible
(i.e. same distribution of vertex degrees and same distribution of long range
plaquettes among the spins). In the following chapter we present the Bethe
approximation and the procedure used to sample the correct statistical prop-
erties, and we will also make a comparison with the simulations: these have
been done on a lattice of 64x64 plaquettes with 400 additional long range
interactions, with coupling constants J = εJ = 1, with a Monte Carlo al-
gorithm based on a single spin flip dynamics. We perform an annealing,
both starting from a system prepared in a paramagnetic phase (gradually
led towards lower temperatures) and from one prepared in the ferromagnetic
ground state (gradually led towards higher temperatures); in both cases the
temperature steps are δT = 0.04, and the MC steps are 106 or 107 according
to whether T > 0.72 or T < 0.72.
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4 Bethe lattice approximation

We studied a version of the previous model on a Bethe lattice, with
the idea that it would have been easier to study the glassy behavior. The
major advantage of using trees is that algorithms as Belief Propagation
(BP) are exact and converge rapidly (in a time that scales linearly with
the dimension of the system). BP is a message passing algorithm and it
can be used to compute marginal distributions, exactly on trees and ap-
proximately on graphs with loops, [10]. In our model, the corresponding
factor graph is a tree whose vertices are spin variables {si}i and whose
action nodes are the plaquettes {σ△}△; the joint distribution of the spin
variables is given by the canonical Boltzmann weight, P(s;β) = Z−1e−βH(s),
withH(s) = −J

∑

△ s△(1)s△(2)s△(3)−J ′
∑

N
sN(1)sN(2)sN(3) (in the following

J = J ′ and △ will denote both short range and long range plaquettes). The
functions which are updated by the algorithm are the messages associated
with each edge of the factor graph, i.e. νi→△(si), ν̃△→i(si); these functions,
which computationally speaking are simple variables, being normalized two-
valued functions, are the marginal probability distributions computed re-
moving specific parts of the graph. For simplicity we will use the variables

hi→△, u△→i such that νi→△(si) =
e
βhi→△si

2 cosh(βhi→△) , ν̃△→i(si) =
e
βu△→isi

2 cosh(βu△→si
) :

in terms of these variables the BP equations become

hi→△ =
∑

△′∈∂i\△

u△′→i,

tanh(u△→i) = tanh(βJ)
∏

j∈∂△\i

tanh (βhj→△) .
(14)

To find the solution (fixed point) to these equations we compute the

variables {h
(t+1)
i→△ , u

(t+1)
△→i } in function of {h

(t)
i→△, u

(t)
△→i}, starting with some

initial conditions; on trees, this procedure always converge. Of course, we
can make a few assumptions on these messages, as suggested by symmetries.
We assume that messages concerning edges with the same type of neighbors
are equal, e.g. hi→△ is not different for all the edges (i,△), but only for
those embedded in sub-trees which are locally different. Now, being this
Bethe lattice an approximation to our plaquette model with long range
interactions, its factor graph has two possible action nodes: one is the lattice
plaquette, and the other is the extra (long range) plaquette; hence, a spin
could have 3 or 4 neighboring action nodes, according to whether a long
range plaquette had been added to it or not.
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Therefore there are 5 possible messages (shown in Fig. 7): from a spin

belonging to 3 (lattice) plaquettes to one of its plaquettes
(

h
(3)
i→L

)

, from a

spin belonging to 4 plaquettes (one of which must be long range) to one of

its lattice plaquettes
(

h
(4)
i→L

)

or to its extra plaquette
(

h
(4)
i→X

)

, and from a

lattice or long range plaquette to one of its spins (uL→i, uX→i) (i, L, X in
the subscripts do not refer to particular nodes). Then, the BP equations for
these messages are (L′, L′′, L′′′, X ′, j, k refer to the other plaquettes and
spins neighboring the relevant node):

h
(3)
i→L = uL′→i + uL′′→i,

h
(4)
i→L = uL′→i + uL′′→i + uX′→i,

h
(4)
i→X = uL′→i + uL′′→i + uL′′′→i,

tanh(uL→i) = tanh(βJ) tanh
(

βh
(3,4)
j→L

)

tanh
(

βh
(3,4)
k→L

)

,

tanh(uX→i) = tanh(βJ) tanh
(

βh
(4)
j→X

)

tanh
(

βh
(4)
k→X

)

.

(15)

(As before, to find the fixed point we use a recurrent relation). The equation
for uL→i is particular because the messages coming from its neighboring

spins can either be of type h
(3)
i→L or h

(4)
i→L, and thus we have to average over

them with the suitable probability. Given that in the long range model
we added αN long range plaquettes (N being the number of short range
plaquettes), the probability that a spin has 4 neighboring plaquettes (rather
than 3) is 3α, because every plaquette is connected to 3 spins and hence
3αN spins are connected to one long range plaquette; now, because of the

involved symmetry, the probability of picking an edge of type h
(4)
i→L is 3

4
times the probability of picking a spin with four plaquettes. Therefore, the

probability of picking an edge h
(4)
i→L rather than h

(3)
i→L is

3α· 3
4

3α· 3
4
+1−3α

= 9α
4−3α .

Instead of actually building a Bethe lattice in a simulation, run the Be-
lief Propagation (BP) equations, and then average over an ensemble of trees,
we perform a population dynamics of distributions; rather than writing re-
current relations for the single message variables h, u, we use distributions
of messages (one per type), sample from them and update them with BP
equations.

First, we build the corresponding distributions P
h
(3)
i→L

, P
h
(4)
i→X

, P
h
(4)
i→L

,

QuX→i
, QuL→i

; initially these are uniformly +1 or random Gaussian to find
the ferromagnetic and paramagnetic solutions, respectively. Then, we up-
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Figure 7: All the different messages we can find the the Bethe lattice. Black
plaquettes are “long range”.

date them with the following equations:

P
h
(3)
i→L

(h) =

∫

dQuL→i
(u) dQuL→i

(v) δ(h − (u+ v)),

P
h
(4)
i→L

(h) =

∫

dQuL→i
(u) dQuL→i

(v) dQuX→i
(w) δ(h − (u+ v + w)),

P
h
(4)
i→X

(h) =

∫

dQuL→i
(u) dQuL→i

(v) dQuL→i
(w) δ(h − (u+ v + w)),

QuL→i
(u) =

∫

dP̃ (h) dP̃ (g) δ (u− U(h, g;β, J)) ,

QuX→i
(u) =

∫

dP
h
(4)
i→L

(h) dP
h
(4)
i→L

(g) δ (u− U(h, g;β, J)) .

(16)

where U(h, g;β, J) = tanh−1 (tanh(βJ) tanh(βh) tanh(βg)), and P̃ (h)
has to be chosen, at each run of the iterative procedure, equal to P

h
(4)
i→L

(h)

with probability a ≡ 9α
4−3α and equal to P

h
(3)
i→X

(h) otherwise.

The corresponding algorithm has been implemented in the following way
(at fixed temperature β and coupling J):

• First, we define the five arrays P
h
(3)
i→L

, P
h
(4)
i→X

, P
h
(4)
i→L

, QuL→i
, QuX→i

, each

with 10000 elements, distributed uniformly or according to a Gaussian
law to find both ferromagnetic and paramagnetic solutions.

• Just for example, we consider only the array QuX→i
. In a loop, at each

step we update the array, randomly and asynchronously: we sample
three uniform random numbers from 0 to 10000, n1, n2, n3, and com-

pute QuX→i
[n1] = U

(

P
h
(4)
i→X

[n2], Ph(4)
i→X

[n3];β, J
)

. The update for the

other distributions is performed in the same way, with the exception
of QuL→i

= U(P[n2], P[n3];β, J), where P is set equal to P
h
(4)
i→X

(h) with
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probability a and to P
h
(3)
i→X

(h) otherwise, independently for each argu-

ment.
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Figure 8: Energy and magnetization, in Bethe lattice approximation and actual
simulations – the annealing has been done in both directions. (J = 1, T = 1

β
).
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• Once the iterations converge to a fixed value, we measure the aver-
age magnetization and energy. For a given edge (i,△), its magne-
tization is tanh (β (hi→△ + u△→i)), so we have to average over the
distribution of edge/message types, which depends on the probabil-
ity p = α

1+α
of picking at random a long range plaquette, rather

than a short range one. Thus, with probability p the magnetization

is tanh
(

β
(

P
h
(4)
i→X

[n1] + QuX→i
[n2]

))

, whereas with probability 1 − p

tanh (β (P[n1] + QuL→i
[n2])), where P, n1, n2 are as before.

• The energy is a computed analogously; the contribution of any pla-
quette △, either long range or short range, is given by

tanh(βJ) + tanh(βh1) tanh(βh2) tanh(βh3)

1 + tanh(βJ) tanh(βh1) tanh(βh2) tanh(βh3)
,

where h1, h2, h3 are the messages incoming from its neighboring spins.
Therefore, with probability p they are all extracted from P

h
(4)
i→X

and

with probability 1− p each of them has to be sampled independently
from P

h
(3)
i→L

(with probability 1− a) or P
h
(4)
i→L

(with probability a).
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Figure 9: Energy of the two models in log scale for sufficiently high values of β.
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In Fig. 8 are shown the plots of energy and magnetization found with
this Bethe lattice approach, compared with the actual data from a simu-
lation on a 64x64 lattice, with J = 1. We see that the two systems have
different low temperature phases, and hence the Bethe lattice approxima-
tion does not actually hold; the reason of this can be understood looking
at the low temperature expansion of the energy. The first term of this
expansion is the contribution given by the smallest excitations above the
ground state: in the Bethe lattice, a single spin flip changes the energy by
(J = 1 in the following) ∆H = 2n where n is the number of neighboring
plaquettes; then, of course, the smallest excitation is given by spins with-
out any long range plaquette and it is equal to ∆H = 6. Keeping in mind
that the fraction of these spins is 1 − 3α, we can say that the first term in
the expansion is 6e−6β(1 − 3α), and in Fig. 9 it is easily seen that this is
indeed the case. On the other hand, the same minimal excitation can be
achieved in more ways in the lattice with long range interactions (two of
such ways are shown in Fig. 10); with a fit we find that the combinatorial
coefficient in this case is not 1 − 3α, but ≈ 1.6063(1 − 3α) (notice that
(1 − 3α) + (1 − 3α)3 ≈ 1.0605 < 1.6063(1 − 3α) ≈ 1.1357, therefore there
must be other lowest energy excitations). Therefore, the Bethe approxima-
tion is not valid and cannot be used to study the transition of the lattice
model with long range interactions.

△ △

△

Figure 10: The first two diagrams are two of the smallest excitations in the lattice
model (their combinatorial factors are 1 − 3α, (1 − 3α)3); the last diagram is
the only smallest excitation of the Bethe lattice model (its combinatorial factor is
1 − 3α). In all cases flipping the central spin(s) gives ∆H = 6; in the second case
– the one with 3 spins, – the central, white plaquettes do not contribute because
σ = s1(−s2)(−s3) = s1s2s3.
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5 Conclusions

As shown in [4, 6, 11], quenched disorder is not a strict requirement to
have a glassy behavior. Indeed, this can be found in ordered short range pla-
quette models; it is remarkable that while they are paradigmatic examples
of the “dynamic facilitation” scenario, the same models in mean field ap-
proximation (for instance the p-spin model) display a thermodynamic glass
transition at finite temperature, suggesting that perhaps the description of
glass formation as a thermodynamic transition or as a purely dynamic pro-
cess may be not contradictory, but rather complementary descriptions of
the same kind of physics (note that explicit mappings between “thermody-
namic” spin glasses and KCMs have been studied e.g. in [3, 8]).

In this report we studied different kinds of perturbations applied to the
two-dimensional Newman-Moore model, as we think that they may lead to
interesting behaviors – a finite temperature glass transition, for instance. To
be more complete, these studies should consider also some other approaches
to be: first of all, it might be interesting to increase the dimensionality of
the lattices in both the long range random triangular plaquette model (LR-
RTPM) and in the incommensurable triangular plaquette model (ITPM),
as that would increase the frustration of the system (i.e. the number of
conflicting interactions per spin) and therefore the glassiness as well – we
should use either “planar” (3-spin) or “tetrahedral” (4-spin) plaquette in-
teractions. Another issue that has not been addressed in the LRRTPM is
whether there are substantial changes as one varies (α, ε), α being the frac-
tion of long range plaquettes added to the NMM, and ε being the relative
strength of their couplings; we know that the glass transition is at zero tem-
perature for ε = 0 and we expect it to be at a higher temperature for ε 6= 0,
but we do not know amuch about the importance of α. For what concerns
the IPTM, on the other hand, we still have to study the single defect low
temperature dynamics. All these points will be studied in a further research.
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