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Why and how does deep supervised learning work? 
 
 
 
Learn from examples: how many are needed? 
 
 
 
Typical tasks: 
 

Regression (fitting functions) 
 
Classification

  SUPERVISED DEEP LEARNING  SUPERVISED DEEP LEARNING
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Performance is evaluated through the generalization error  
 
 
 
Learning curves decay with number of examples , often as 
 
 
 

 depends on the dataset and on the algorithm 
 

ϵ

n

β

Deep networks: -  [Hestness et al. 2017]β ∼ 0.07 0.35

  LEARNING CURVES  LEARNING CURVES

ϵ ∼ n−β

We lack a theory for  for deep networks!β
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Performance increases with overparametrization 
 
 
   study the infinite-width limit! 
 
 
 
 
 
 

⟶

  LINK WITH KERNEL LEARNING  LINK WITH KERNEL LEARNING

h

[Neyshabur et al. 2017, 2018, Advani and Saxe 2017]
[Spigler et al. 2018, Geiger et al. 2019, Belkin et al. 2019]

[Mei et al. 2017, Rotskoff and Vanden-Eijnden 2018, Jacot et al. 2018, Chizat and Bach 2018, ...] 

ϵ

h
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With a specific scaling, infinite-width limit  kernel learning→

Performance increases with overparametrization 
 
 
   study the infinite-width limit! 
 
 
 
 
 
 

⟶

[ Jacot et al. 2018]

What are the learning curves of kernels like?

  LINK WITH KERNEL LEARNING  LINK WITH KERNEL LEARNING

(next slides)

h

[Neyshabur et al. 2017, 2018, Advani and Saxe 2017]
[Spigler et al. 2018, Geiger et al. 2019, Belkin et al. 2019]

[Mei et al. 2017, Rotskoff and Vanden-Eijnden 2018, Jacot et al. 2018, Chizat and Bach 2018, ...] 

ϵ

h

Neural Tangent Kernel
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Very brief introduction to kernel methods 
 
 
Performance of kernels on real data 
 
 
Gaussian data: Teacher-Student regression 
 
 
Gaussian approximation: smoothness and effective dimension 
 
 
Dimensional reduction via invariants in the task

  OUTLINE  OUTLINE
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Kernel methods learn non-linear functions or boundaries 
 
Map data to a feature space, where the problem is linear

data  use linear combination of features ⟶x  (  ) ⟶ϕ x

( )ϕ x

  KERNEL METHODS  KERNEL METHODS
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Kernel methods learn non-linear functions or boundaries 
 
Map data to a feature space, where the problem is linear

data  use linear combination of features ⟶x  (  ) ⟶ϕ x

only scalar products are needed:                     

( )ϕ x

  KERNEL METHODS  KERNEL METHODS

kernel K(  ,  )x x′
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 (  ) ⋅ϕ x  (  )ϕ x′
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Kernel methods learn non-linear functions or boundaries 
 
Map data to a feature space, where the problem is linear

data  use linear combination of features ⟶x  (  ) ⟶ϕ x

only scalar products are needed:                     

( )ϕ x

  KERNEL METHODS  KERNEL METHODS

kernel K(  ,  )x x′

→

K(  ,  ) =x x′ exp −  ( σ2
∣∣  −  ∣∣x x′ 2 )

K(  ,  ) =x x′ exp −  ( σ
∣∣  −  ∣∣x x′ )

Gaussian:

Laplace:

 (  ) ⋅ϕ x  (  )ϕ x′
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E.g. kernel regression:

Target function    
 
 

  →xμ Z(   ),   μ =xμ 1, … ,n

  KERNEL REGRESSION  KERNEL REGRESSION
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E.g. kernel regression:

Target function    
 
 
Build an estimator   
 
 

  →xμ Z(   ),   μ =xμ 1, … ,n

 (  ) =ẐK x  c K(   ,  )∑μ=1
n

μ xμ x

  KERNEL REGRESSION  KERNEL REGRESSION
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E.g. kernel regression:

Target function    
 
 
Build an estimator   
 
 
Minimize training MSE  

 
 

  →xμ Z(   ),   μ =xμ 1, … ,n

 (  ) =ẐK x  c K(   ,  )∑μ=1
n

μ xμ x

=    (   ) − Z(   )
n
1 ∑μ=1

n [ẐK xμ xμ ]2

  KERNEL REGRESSION  KERNEL REGRESSION
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E.g. kernel regression:

Target function    
 
 
Build an estimator   
 
 
Minimize training MSE  

 
 
Estimate the generalization error 

  →xμ Z(   ),   μ =xμ 1, … ,n

 (  ) =ẐK x  c K(   ,  )∑μ=1
n

μ xμ x

=    (   ) − Z(   )
n
1 ∑μ=1

n [ẐK xμ xμ ]2

ϵ = E   (  ) − Z(  )
 x [ẐK x x ]2

  KERNEL REGRESSION  KERNEL REGRESSION
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A kernel  induces a corresponding Hilbert space  with norm

 

 
where  is such that

 
 

 
 
 

 is called the Reproducing Kernel Hilbert Space (RKHS)

K H  K

∣∣Z∣∣  =K d  d  Z(  )K (  ,  )Z(  )∫ x y x −1 x y y

K (  ,  )−1 x y

d K (  ,  )K(  ,  ) =∫ y −1 x y y z δ(  ,  )x z

H  K

  REPRODUCING KERNEL HILBERT SPACE (RKHS)  REPRODUCING KERNEL HILBERT SPACE (RKHS)
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Regression: performance depends on the target function! 
 
 

  PREVIOUS WORKS  PREVIOUS WORKS
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Regression: performance depends on the target function! 
 
 

If only assumed to be Lipschitz, then  
 
 

β =  

d
1

Curse of dimensionality! [Luxburg and Bousquet 2004]

  PREVIOUS WORKS  PREVIOUS WORKS

 = dimension of the input spaced ⟶
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Regression: performance depends on the target function! 
 
 

If only assumed to be Lipschitz, then  
 
 
If assumed to be in the RKHS, then  does not depend on  
 
 

β =  

d
1

β ≥  2
1 d

Curse of dimensionality! [Luxburg and Bousquet 2004]

[Smola et al. 1998, Rudi and Rosasco 2017]

  PREVIOUS WORKS  PREVIOUS WORKS

 = dimension of the input spaced ⟶
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Regression: performance depends on the target function! 
 
 

If only assumed to be Lipschitz, then  
 
 
If assumed to be in the RKHS, then  does not depend on  
 
 
Yet, RKHS is a very strong assumption on the smoothness of the
target function (see later on)

β =  

d
1

β ≥  2
1 d

Curse of dimensionality! [Luxburg and Bousquet 2004]

[Smola et al. 1998, Rudi and Rosasco 2017]

[Bach 2017]

  PREVIOUS WORKS  PREVIOUS WORKS

 = dimension of the input spaced ⟶
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We apply kernel methods on
  REAL DATA AND ALGORITHMS  REAL DATA AND ALGORITHMS

MNIST CIFAR10
2 classes: even/odd

70000 28x28 b/w pictures
2 classes: first 5/last 5

60000 32x32 RGB pictures

We perform

regression        ⟶

classification   ⟶

kernel regression

margin SVM

dimension d = 784 dimension d = 3072

→ →
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Same exponent for regression and classification 
 
Same exponent for Gaussian and Laplace kernel 
 
MNIST and CIFAR10 display exponents  but β ≫  

d
1 <  2

1

  REAL DATA:  REAL DATA:
  EXPONENTS  EXPONENTS

β ≈ 0.4 β ≈ 0.1
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Same exponent for regression and classification 
 
Same exponent for Gaussian and Laplace kernel 
 
MNIST and CIFAR10 display exponents  but β ≫  

d
1 <  2

1

  REAL DATA:  REAL DATA:
  EXPONENTS  EXPONENTS

We need a new framework!

β ≈ 0.4 β ≈ 0.1
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Controlled setting: Teacher-Student regression 
 
 
 

  KERNEL TEACHER-STUDENT FRAMEWORK  KERNEL TEACHER-STUDENT FRAMEWORK
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Controlled setting: Teacher-Student regression 
 
 
 
Training data are sampled from a Gaussian Process: 
 
       
       are random on a -dim hypersphere 
 
 
 

Z  (   ), … ,Z  (   )  ∼  T x1 T xn N (0,K  )T

  xμ d

  KERNEL TEACHER-STUDENT FRAMEWORK  KERNEL TEACHER-STUDENT FRAMEWORK
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Controlled setting: Teacher-Student regression 
 
 
 
Training data are sampled from a Gaussian Process: 
 
       
       are random on a -dim hypersphere 
 
 
 

Z  (   ), … ,Z  (   )  ∼  T x1 T xn N (0,K  )T

  xμ d

  KERNEL TEACHER-STUDENT FRAMEWORK  KERNEL TEACHER-STUDENT FRAMEWORK

EZ  (   ) =T xμ 0

EZ  (   )Z  (   ) =T xμ T xν K  (∣∣   −T xμ   ∣∣)xν

12



Controlled setting: Teacher-Student regression 
 
 
 
Training data are sampled from a Gaussian Process: 
 
       
       are random on a -dim hypersphere 
 
 
 
Regression is done with another kernel 

Z  (   ), … ,Z  (   )  ∼  T x1 T xn N (0,K  )T

  xμ d

K  S

  KERNEL TEACHER-STUDENT FRAMEWORK  KERNEL TEACHER-STUDENT FRAMEWORK

EZ  (   ) =T xμ 0

EZ  (   )Z  (   ) =T xμ T xν K  (∣∣   −T xμ   ∣∣)xν
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  TEACHER-STUDENT: SIMULATIONS  TEACHER-STUDENT: SIMULATIONS
G
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Ex
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 −
β

Can we understand these curves?
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 (  ) =ẐS x   (  ) ⋅kS x K   S
−1Z

  TEACHER-STUDENT: REGRESSION  TEACHER-STUDENT: REGRESSION

where

Explicit solution:

Regression:
 (  ) =ẐS x  c  K  (   ,  )∑μ=1

n
μ S xμ x

Minimize =    (   ) − Z  (   )
n
1 ∑μ=1

n [ẐS xμ T xμ ]2
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 (  ) =ẐS x   (  ) ⋅kS x K   S
−1Z (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT

  TEACHER-STUDENT: REGRESSION  TEACHER-STUDENT: REGRESSION

(   (  ))  =kS x μ K  (   ,  )S xμ x

where

kernel overlapExplicit solution:

Regression:
 (  ) =ẐS x  c  K  (   ,  )∑μ=1

n
μ S xμ x

Minimize =    (   ) − Z  (   )
n
1 ∑μ=1

n [ẐS xμ T xμ ]2
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−1Z (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT

  TEACHER-STUDENT: REGRESSION  TEACHER-STUDENT: REGRESSION

(   (  ))  =kS x μ K  (   ,  )S xμ x

(K  )  =S μν K  (   ,   )S xμ xνwhere

kernel overlap

Gram matrix

Explicit solution:

Regression:
 (  ) =ẐS x  c  K  (   ,  )∑μ=1

n
μ S xμ x

Minimize =    (   ) − Z  (   )
n
1 ∑μ=1

n [ẐS xμ T xμ ]2

14
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−1ZT

  TEACHER-STUDENT: REGRESSION  TEACHER-STUDENT: REGRESSION

(   )  =ZT μ Z  (   )T xμ

(   (  ))  =kS x μ K  (   ,  )S xμ x

(K  )  =S μν K  (   ,   )S xμ xνwhere

kernel overlap

Gram matrix

training data

Explicit solution:

Regression:
 (  ) =ẐS x  c  K  (   ,  )∑μ=1

n
μ S xμ x

Minimize =    (   ) − Z  (   )
n
1 ∑μ=1

n [ẐS xμ T xμ ]2
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−1Z (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT (  ) =ẐS x   (  ) ⋅kS x K    S
−1ZT

  TEACHER-STUDENT: REGRESSION  TEACHER-STUDENT: REGRESSION

(   )  =ZT μ Z  (   )T xμ

(   (  ))  =kS x μ K  (   ,  )S xμ x

(K  )  =S μν K  (   ,   )S xμ xνwhere

Compute the generalization error  and how it scales with ϵ n

ϵ = E  d  (  ) − Z  (  ) ∼T ∫ dx [ẐS x T x ]2
n−β

kernel overlap

Gram matrix

training data

Explicit solution:

Regression:
 (  ) =ẐS x  c  K  (   ,  )∑μ=1

n
μ S xμ x

Minimize =    (   ) − Z  (   )
n
1 ∑μ=1

n [ẐS xμ T xμ ]2
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  TEACHER-STUDENT: THEOREM (1/2)  TEACHER-STUDENT: THEOREM (1/2)
To compute the generalization error: 
 

We look at the problem in the frequency domain 
 
We assume that  and  as  
 
 
 
 

 (  ) ∼K
~

S w ∣∣  ∣∣w −α  S
 (  ) ∼K

~
T w ∣∣  ∣∣w −α  T ∣∣  ∣∣ →w ∞
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  TEACHER-STUDENT: THEOREM (1/2)  TEACHER-STUDENT: THEOREM (1/2)
To compute the generalization error: 
 

We look at the problem in the frequency domain 
 
We assume that  and  as  
 
 
 
 
SIMPLIFYING ASSUMPTION: We take the  points  on a
regular  -dim lattice!

 (  ) ∼K
~

S w ∣∣  ∣∣w −α  S
 (  ) ∼K

~
T w ∣∣  ∣∣w −α  T ∣∣  ∣∣ →w ∞

n   xμ

d

E.g. Laplace has  and Gaussian has α = d + 1 α = ∞
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  TEACHER-STUDENT: THEOREM (1/2)  TEACHER-STUDENT: THEOREM (1/2)
To compute the generalization error: 
 

We look at the problem in the frequency domain 
 
We assume that  and  as  
 
 
 
 
SIMPLIFYING ASSUMPTION: We take the  points  on a
regular  -dim lattice!

 (  ) ∼K
~

S w ∣∣  ∣∣w −α  S
 (  ) ∼K

~
T w ∣∣  ∣∣w −α  T ∣∣  ∣∣ →w ∞

n   xμ

d

ϵ ∼ n−β β =  min(α  −
d
1

T d, 2α  )S

Then we can show that

with

E.g. Laplace has  and Gaussian has α = d + 1 α = ∞

(details: ) arXiv:1905.10843

for n ≫ 1
15
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  TEACHER-STUDENT: THEOREM (2/2)  TEACHER-STUDENT: THEOREM (2/2)

Large  fast decay at high freq  indifference to local details 
 
 

 is intrinsic to the data (T),  depends on the algorithm (S) 
 
 
If  is large enough,   takes the largest possible value  
 
 
As soon as  is small enough, 

α → →

α  T α  S

α  S β  

d
α  −dT

α  S β =  

d
2α  S

(optimal learning)

β =  min(α  −
d
1

T d, 2α  )S

16



If Teacher=Student=Laplace 
 
 
 
 
 
If Teacher=Gaussian, Student=Laplace

β =  min(α  −
d
1

T d, 2α  )S

What is the prediction for our simulations?

(curse of dimensionality!)β =  =
d

α  −dT
 

d
1

( )α  =T α  =S d + 1

( )α  =T ∞,α  =S d + 1

β =  =
d

2α  S 2 +  

d
2

  TEACHER-STUDENT: COMPARISON (1/2)  TEACHER-STUDENT: COMPARISON (1/2)
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Ex
po

ne
nt

 −
β

Our result matches the numerical simulations 
 
There are finite size effects (small )n

(on hypersphere)

  TEACHER-STUDENT: COMPARISON (2/2)  TEACHER-STUDENT: COMPARISON (2/2)
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  TEACHER-STUDENT: MATÉRN TEACHER  TEACHER-STUDENT: MATÉRN TEACHER
K  (  ) =T x  z K  (z), z =Γ(ν)

21−ν
ν

ν  , α =2ν
σ

∣∣  ∣∣x
d + 2νMatérn kernels: 

n

β = min(2ν, 4)

d = 1

K  (  ) =S x exp −  (
σ

∣∣  ∣∣x )Laplace student, 

19



Same result with points on regular lattice or random hypersphere?
 

What matters is how nearest-neighbor distance  scales with δ n

  NEAREST-NEIGHBOR DISTANCE  NEAREST-NEIGHBOR DISTANCE

In both cases  δ ∼ n  d
1

Finite size effects:
asymptotic scaling only
when  is large enoughn

(conjecture)

20



What about real data?
 second order approximation with a Gaussian process :

does it capture some aspects?

⟶ K  T

  BACK TOREAL DATA  BACK TOREAL DATA
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What about real data?
 second order approximation with a Gaussian process :

does it capture some aspects?

⟶ K  T

  BACK TOREAL DATA  BACK TOREAL DATA

Gaussian processes are -times (mean-square) differentiable, 
                                                   
 

s

s =  2
α  −dT
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What about real data?
 second order approximation with a Gaussian process :

does it capture some aspects?

⟶ K  T

  BACK TOREAL DATA  BACK TOREAL DATA

Gaussian processes are -times (mean-square) differentiable, 
                                                   
 
Fitted exponents are  (MNIST) and  (CIFAR10),
regardless of the Student 

s

s =  2
α  −dT

β ≈ 0.4 β ≈ 0.1
⟶ β =  

d
α  −dT

(since  indep. of )β =  min(α  −
d
1

T d, 2α  )S α  ⟶S β =  

d
α  −dT
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What about real data?
 second order approximation with a Gaussian process :

does it capture some aspects?

⟶ K  T

  BACK TOREAL DATA  BACK TOREAL DATA

Gaussian processes are -times (mean-square) differentiable, 
                                                   
 
Fitted exponents are  (MNIST) and  (CIFAR10),
regardless of the Student 

s

s =  2
α  −dT

β ≈ 0.4 β ≈ 0.1
⟶ β =  

d
α  −dT

 ,  (MNIST) and  (CIFAR10) 
 

This number is unreasonably large!

⟶ s =  βd2
1 s ≈ 0.2d ≈ 156 s ≈ 0.05d ≈ 153

(since  indep. of )β =  min(α  −
d
1

T d, 2α  )S α  ⟶S β =  

d
α  −dT

21



  EFFECTIVE DIMENSION  EFFECTIVE DIMENSION
Measure NN-distance  
 
 
 

δ

δ ∼ n−some exponent
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  EFFECTIVE DIMENSION  EFFECTIVE DIMENSION
Measure NN-distance  
 
 
 

δ

δ ∼ n−some exponent

Define effective dimension as δ ∼ n
−  d  eff

1

⟶

22



  EFFECTIVE DIMENSION  EFFECTIVE DIMENSION
Measure NN-distance  
 
 
 

δ

δ ∼ n−some exponent

Define effective dimension as δ ∼ n
−  d  eff

1

⟶

MNIST 0.4
CIFAR10 0.1

β d  eff s =  βd  ⌊ 2
1

eff⌋

3
135

15

 is much smallerd  eff

 is more reasonable!s

⟶

⟶

22

784
3072
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  CURSE OF DIMENSIONALITY (1/2)  CURSE OF DIMENSIONALITY (1/2)

Loosely speaking, the (optimal) exponent is 
 
 
 
 
 
To avoid the curse of dimensionality ( ): 
 

either the dimension of the manifold is small 
 
or the data are extremely smooth

β ∼  

d
1

β ≈  manifold dimension  d
smoothness  α  −d=2sT

23



  RKHS & SMOOTHNESS  RKHS & SMOOTHNESS
Indeed, what happens if we consider a field  that 
 

is an instance of a Teacher 
lies in the RKHS of a Student 

Z  (  )T x

K  T

K  S

( )α  T

( )α  S

24



  RKHS & SMOOTHNESS  RKHS & SMOOTHNESS
Indeed, what happens if we consider a field  that 
 

is an instance of a Teacher 
lies in the RKHS of a Student 

Z  (  )T x

K  T

K  S

⟹ α  >T α  +S d

( )α  T

( )α  S

E  ∣∣Z  ∣∣  =T T K  S

E  d  d  Z  (  )K  (  ,  )Z  (  ) =T ∫ dx dy T x S
−1 x y T y

d  d  K  (  ,  )K  (  ,  ) <∫ dx dy T x y S
−1 x y ∞
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  RKHS & SMOOTHNESS  RKHS & SMOOTHNESS
Indeed, what happens if we consider a field  that 
 

is an instance of a Teacher 
lies in the RKHS of a Student 

Z  (  )T x

K  T

K  S

⟹ α  >T α  +S d

( )α  T

( )α  S

α  >S d

E  ∣∣Z  ∣∣  =T T K  S

E  d  d  Z  (  )K  (  ,  )Z  (  ) =T ∫ dx dy T x S
−1 x y T y

d  d  K  (  ,  )K  (  ,  ) <∫ dx dy T x y S
−1 x y ∞

K  (  ) ∝S 0 d   (  ) <∫ wK
~

S w ∞ ⟹
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  RKHS & SMOOTHNESS  RKHS & SMOOTHNESS
Indeed, what happens if we consider a field  that 
 

is an instance of a Teacher 
lies in the RKHS of a Student 

Z  (  )T x

K  T

K  S

⟹ α  >T α  +S d

( )α  T

( )α  S

α  >S d

E  ∣∣Z  ∣∣  =T T K  S

E  d  d  Z  (  )K  (  ,  )Z  (  ) =T ∫ dx dy T x S
−1 x y T y

d  d  K  (  ,  )K  (  ,  ) <∫ dx dy T x y S
−1 x y ∞

K  (  ) ∝S 0 d   (  ) <∫ wK
~

S w ∞ ⟹

Therefore the smoothness must be s =  >2
α  −dT

 2
d

(it scales with !)d

⟶ β >  2
1 24



  CURSE OF DIMENSIONALITY (2/2)  CURSE OF DIMENSIONALITY (2/2)

Assume that the data are not smooth enough and live in  large 
 
 
Dimensionality reduction in the task rather than in the data? 
 
 
E.g. the  points  live in , but the target function is such that 
 
 
 
 
 
Can kernels understand the lower dimensional structure?

d

n   xμ Rd

Z  (  ) =T x Z  (   ) ≡T x∥ Z  (x  , … ,x  ), d  <T 1 d  ∥ ∥ d

Similar setting studied in Bach 2017
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  TASK INVARIANCE: KERNEL REGRESSION (1/2)  TASK INVARIANCE: KERNEL REGRESSION (1/2)

ϵ ∼ n−β β =  min(α  −
d
1

T d, 2α  )S

Theorem (informal formulation): 
 

in the described setting with ,d  ≤∥ d

withfor n ≫ 1

Regardless of !d  ∥

Two reasons contribute to this result:
 

the nearest-neighbor distance always scales as  
 

 only depends on the function  and not on 

δ ∼ n−  d
1

α  (d) −T d K  (z)T d

Similar result in Bach 2017
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  TASK INVARIANCE: KERNEL REGRESSION (2/2)  TASK INVARIANCE: KERNEL REGRESSION (2/2)

Teacher = Matérn (with parameter ),    Student = Laplace,    =4ν d

n 27



+

+

+
+

+

+
+

-

-

- -

- -
-

- -
--

--

28

  TASK INVARIANCE: CLASSIFICATION (1/2)  TASK INVARIANCE: CLASSIFICATION (1/2)
Classification with the margin SVM algorithm:

 (  ) =ŷ x sign  c  K  + b[∑μ=1
n

μ (
σ

∣∣  −  ∣∣x xμ ) ]
find  by minimizing some function{c  }, bμ

We consider a very simple setting:

the label is y(  ) =x y(x  )  ⟶  1 d  =∥ 1

y(x  ) :1
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Non-Gaussian data!



  TASK INVARIANCE: CLASSIFICATION (2/2)  TASK INVARIANCE: CLASSIFICATION (2/2)

: then the estimator is tantamount to a nearest-neighbor
algorithm   curse of dimensionality  
 
 
 

: important correlations in  due to the long-range
kernel. For the hyperplane with  we find !

σ ≪ δ

⟶ β =  

d
1

σ ≫ δ cμ

d  =∥ 1 β = O(d )0

Vary kernel scale     two regimes! σ ⟶

No curse of dimensionality!
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  THE NEAREST-NEIGHBOR LIMIT  THE NEAREST-NEIGHBOR LIMIT

using a Laplace kernel
and

varying the dimension :

 
 

d

β =  

d
1

n

hyperplane
interface
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  KERNEL CORRELATIONS (1/2)  KERNEL CORRELATIONS (1/2)

K  ≈(
σ

∣∣  −  ∣∣x xμ ) K(0) − const ×  (
σ

∣∣  −  ∣∣x xμ )ξ

When  we can expand the kernel overlaps:σ ≫ δ

(the exponent  is linked to the smoothness of the kernel)ξ

We can derive some scaling arguments that lead to an exponent

β =  3d+ξ−3
d+ξ−1
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  KERNEL CORRELATIONS (1/2)  KERNEL CORRELATIONS (1/2)

K  ≈(
σ

∣∣  −  ∣∣x xμ ) K(0) − const ×  (
σ

∣∣  −  ∣∣x xμ )ξ

When  we can expand the kernel overlaps:σ ≫ δ

(the exponent  is linked to the smoothness of the kernel)ξ

We can derive some scaling arguments that lead to an exponent

β =  3d+ξ−3
d+ξ−1

Idea:

support vectors ( ) are close to the interface
we impose that the decision boundary has  spatial fluctuations on a scale
proportional to 

c   =μ  0
O(1)

δ
31



n

  KERNEL CORRELATIONS (2/2)  KERNEL CORRELATIONS (2/2)

β =  3d+ξ−3
d+ξ−1

d = 1

hyperplane

band

n

n

Laplace kernel ξ = 1

32

Matérn kernels ξ = min(2ν, 2)

in all these cases!



  KERNEL CORRELATIONS: HYPERSPHERE  KERNEL CORRELATIONS: HYPERSPHERE

β =  3d+ξ−3
d+ξ−1

n

boundary = hypersphere:

Laplace kernels ( )ξ = 1

What about other interfaces?

y(  ) =x sign(∣∣  ∣∣ −x R)

(same exponent!)

(similar scaling arguments apply,
provided )R ≫ δ

( )d  =∥ 1

-

-

- -

- -
-

- -
-
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  CONCLUSION  CONCLUSION
Learning curves of real data decay as power laws with exponents 
 
 
We introduce a new framework that links the exponent  to the degree
of smoothness of Gaussian random data 
 
 
We justify how different kernels can lead to the same exponent  
 
 
We show that the effective dimension of real data is . It can be
linked to a (small) effective smoothness  
 
 
We show that kernel regression is not able to capture invariants in the
task, while kernel classification can

β

β

≪ d

s

 + paper to be released soon! arXiv:1905.10843

 ≪
d
1 β <  2

1

(in some regime and for smooth interfaces)34
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