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e Why and how does deep supervised learning work?

e Learn from examples: how many are needed?

e Typical tasks:

m Regression (fitting functions)

m Classification



e Performance is evaluated through the generalization error ¢

e |earning curves decay with number of examples n, often as
e~nP

e 5 depends on the dataset and on the algorithm

Deep networks: g ~ 0.07-0.35 [Hestness et al. 2017]

We lack a theory for  for deep networks!



e Performance increases with overparametrization

[Neyshabur et al. 2017, 2018, Advani and Saxe 2017]
[Spigler et al. 2018, Geiger et al. 2019, Belkin et al. 2019]

— study the infinite-width limit!
[Mei et al. 2017, Rotskoff and Vanden-Eijnden 2018, Jacot et al. 2018, Chizat and Bach 2018, ...]
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e Performance increases with overparametrization

[Neyshabur et al. 2017, 2018, Advani and Saxe 2017]
[Spigler et al. 2018, Geiger et al. 2019, Belkin et al. 2019]

— study the infinite-width limit!
[Mei et al. 2017, Rotskoff and Vanden-Eijnden 2018, Jacot et al. 2018, Chizat and Bach 2018, ...]
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e With a specific scaling, infinite-width limit — kernel learning
[Jacot et al. 2018] (next slides)

Neural Tangent Kernel

What are the learning curves of kernels like? 4



Very brief introduction to kernel methods

Performance of kernels on real data

Gaussian data: Teacher-Student regression

Gaussian approximation: smoothness and effective dimension

Dimensional reduction via invariants in the task



e Kernel methods learn non-linear functions or boundaries

e Map data to a feature space, where the problem is linear

data z — ¢(z) — use linear combination of features
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e Kernel methods learn non-linear functions or boundaries

e Map data to a feature space, where the problem is linear

data z — ¢(z) — use linear combination of features

only scalar products are needed: Ii(g) - 9(z)

pN

kernel K (z,z')
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e Kernel methods learn non-linear functions or boundaries

e Map data to a feature space, where the problem is linear

data z — ¢(z) — use linear combination of features

only scalar products are needed: Ii(g) - 9(z)

pN

kernel K(z,z')
Gaussian:

K(z,2') = exp (2 #)

Laplace: ,
K(z,2') = oxp (~ 152L)

6




E.g. kernel regression:

e Target function z

L 4(z,), p=1,...,n



E.g. kernel regression:

e Target function z

L 4(z,), p=1,...,n

e Build an estimator Zx(z) =Y\, c,K(z,,z)



E.g. kernel regression:

e Target function z

L 4(z,), m=1,...

,

e Build an estimator Zx(z) =Y\, c,K(z,,z)

e Minimize training MSE = %ZZ:l [ZK(:I;



E.g. kernel regression:

Target function z, — Z(z,), pn=1,...,n

Build an estimator Zg(z) =3 ; c.K(z

)

2
Minimize training MSE = 3" [ZK(:I: ) — Z(zu)}

Estimate the generalization error ¢ = E, [ZK(Q) — Z(z



A kernel K induces a corresponding Hilbert space Hx with norm

|1Z|k = [dedy Z(z)K ' (2,y)Z(y)

where K—1(z,y) is such that

[dy K ' (z,y)K(y,2) = 6(z, 2)

Hy is called the Reproducing Kernel Hilbert Space (RKHS)



Regression: performance depends on the target function!



Regression: performance depends on the target function!

d = dimension of the input space

/

e If only assumed to be Lipschitz, then g = 1

Curse of dimensionality! [Luxburg and Bousquet 2004]



Regression: performance depends on the target function!

d = dimension of the input space

/

e If only assumed to be Lipschitz, then g = 1

Curse of dimensionality! [Luxburg and Bousquet 2004]

e If assumed to be in the RKHS, then 8 > 1 does not depend on d

[Smola et al. 1998, Rudi and Rosasco 2017]



Regression: performance depends on the target function!

d = dimension of the input space

/

e If only assumed to be Lipschitz, then g = 1

Curse of dimensionality! [Luxburg and Bousquet 2004]

e If assumed to be in the RKHS, then 8 > 1 does not depend on d

[Smola et al. 1998, Rudi and Rosasco 2017]

e Yet, RKHS is a very strong assumption on the smoothness of the

target function (see later on)
[Bach 2017]



We apply kernel methods on

MNIST CIFAR10
2 classes: even/odd 2 classes: first 5/last 5
70000 28x28 b/w pictures 60000 32x32 RGB pictures
l l
dimension d = 784 dimension d = 3072
Num: 0 Num: 1 Num: 2 Num: 3 Num: 4 airplane automobile
/
1‘}'
regression —
We perform

classification — margin SVM 10
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e Same exponent for regression and classification

e Same exponent for Gaussian and Laplace kernel

e MNIST and CIFAR10 display exponents 3 > % but < 3
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11



Regression on MNIST

Regression on CIFAR10

o] .
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Classification on MNIST

Classification o

n CIFAR10

We need a new framework!

= Gaussian

— Laplace
___ p—010
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102
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e Same exponent for regression and classification

e Same exponent for Gaussian and Laplace kernel

e MNIST and CIFAR10 display exponents 3 > % but < 3
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KERNEL TEACHER-STUDENT FRAMEWORK

e Controlled setting: Teacher-Student regression

12



e Controlled setting: Teacher-Student regression

e Training data are sampled from a Gaussian Process:

Zr(2y), .-, Zr(z,) ~ N(0,Kr)
z, are random on a d-dim hypersphere

12



e Controlled setting: Teacher-Student regression

e Training data are sampled from a Gaussian Process:

Zr(2y), .-, Zr(z,) ~ N(0,Kr)
z, are random on a d-dim hypersphere

EZr (&N)ZT (z,) =

EZr(z

u) =

0

Kr(|z, —z,[)
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e Controlled setting: Teacher-Student regression

e Training data are sampled from a Gaussian Process:

Zr(2y), .-, Zr(z,) ~ N(0,Kr)
z, are random on a d-dim hypersphere

EZr (&N)ZT (z,) =

e Regression is done with another kernel K

EZr(z

u) =

0

Kr(|z, —z,[)

12



TEACHER-STUDENT:

Generalization error

Exponent —j

E MSE

log EMSE/logn
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107*
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SIMULATIONS

N Gaussian-Laplace Laplace-Laplace |
3y d=4 a=4
=e —— d=8 — d=8 i
— d=16 — d=16
— d=32 || T —_— d=32 —
~~~~~~~ =107
10’ 10° 10° 10° 10’ 10° 10° 10"
n n
—- 0.0
-—0.2
-—0.4
-—0.6
-—0.8
Gaussian-Laplace Laplace-Laplace |-_q g
5 10 15 20 25 30 5 10 15 20 25 30
d d

Can we understand these curves?

13



Regression:

Explicit solution:

A

Zs(z) =kg(z) Kg'Z

ZS(Q):ZZ_lc#KS(w ,2)
Minimize = 1 5" [ s(z,) — Zr(z,)

where

2

14



. Zs(z) = Y, cuKs(z,, )
Regression: .

Minimize = 1 5" [ s(z,) — Zr(z,)

)
- . (ks(z)), = Ks(z,,, z)
Explicit solution: kernel overlap

A

Zs(z) =kg(z) K,'Z, where

14



. Zs(z) =Y cuKs(z,, 2)
Regression: .

Minimize = 1 5" [ s(z,) — Zr(z,)

/

. . : (ES(E))M — KS(QWE)
Explicit solution: kernel overlap

Zs(z) =kg(z) - Kg'Z, where < (Kg), =Ks(z,,z,)

Gram matrix

14



. Zs(z) =Y cuKs(z,, 2)
Regression: .

Minimize = 1 5" [ s(z,) — Zr(z,)

/

. . : (ES(E))M — KS(QWE)
Explicit solution: kernel overlap

Zs(z) = kg(z) - Kg'Z; where ({ (Kg), = Ks(z,,z,)

Gram matrix

A = Z
. (_T)M T(@M) training data

14



. Zs(z) = Yy cuKs(z,,2)
Regression: .

Minimize = 1 5" [ s(z,) — Zr(z,)

/

. . : (ES(E))M — KS(QWE)
Explicit solution: kernel overlap

Zs(z) = kg(z) - Kg'Zy where ({ (Kg), = Ks(z,,z,)

Gram matrix

Zr), = 4
N (_T)M T(ﬁu) training data

Compute the generalization error e and how it scales with n

e =By [d'z [25(2) - Zr(a)| ~n? ;



To compute the generalization error:

e We |look at the problem in the frequency domain

* We assume that Kg(w) ~ |w| > and Kr(w) ~ |w| " as|w| — oo

15



FEACHER-STUDE [- THEOREM \1/<£)

To compute the generalization error:

e We |look at the problem in the frequency domain

* We assume that Kg(w) ~ |w| > and Kr(w) ~ |w| " as|w| — oo

E.g. Laplace has a = d + 1 and Gaussian has a = oo

15



TEACHER-STUDENT: THEOREM (1/2)

To compute the generalization error:

e We |look at the problem in the frequency domain

e We assume that Kg(w) ~ |w|~* and Kr(w) ~ |w| ™ as|w| — oo

E.g. Laplace has a = d + 1 and Gaussian has a = oo

* SIMPLIFYING ASSUMPTION: We take the n points z, on a
regular d-dim lattice!

15



CACLICED CTI INCANIT. T1 J“F AOCWA (A /D)
HER-STUDENT: THEOREM (1/2)

To compute the generalization error:

e We |look at the problem in the frequency domain

* We assume that Kg(w) ~ |w| > and Kr(w) ~ |w| " as|w| — oo

E.g. Laplace has a = d + 1 and Gaussian has a = oo

* SIMPLIFYING ASSUMPTION: We take the n points z, on a

regular d-dim lattice!
(details: arXiv:1905.10843)

Then we can show that

forn>1 e~nP with ﬂ — cll min(aT - d7 2aS) 15



https://arxiv.org/abs/1905.10843

1

B8 = s min(ar — d, 2ag)

Large a — fast decay at high freq — indifference to local details

ag is intrinsic to the data (T), ag depends on the algorithm (S)

If ag is large enough, g takes the largest possible value

As soon as ag is small enough, g = 2

(optimal learning)

aT—d

16



What is the prediction for our simulations?

B = > min(ar — d,2as)

e |f Teacher=Student=Laplace (ar =as=d+1)
5 p— aTd_d p— é (curse of dimensionality!)

e |f Teacher=Gaussian, Student=Laplace  (ar = oo, a5 =d +1)

5:”%:24_%

17



Exponent —j

log EMSE/logn
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e QOur result matches the numerical simulations
(on hypersphere)

e There are finite size effects (small n)

Gaussian-Laplace

Laplace-Laplace

e [\|SE ~ n~2(1+1/(d-1) e [ MSE ~n~Wd-1) 0.6
; n=64 n=16 '
n=256 n=128
—e— n=1024 —— n=1024 -—0.8
—e— N=4096 —e— nN=4096
I —— n=8192 —— n=8192 L 1.0
10 15 20 25 30 10 15 20 25 30
d d

18



MSE

TEACHER-STUDENT: MATERN TEACHER

B = min(2v,4)

, 1—v
Matérn kernels: Kr(z) = %(V) 2K, (2), z= \/21/"(‘;;", o =d+ 2v
_ |z]
Laplace student, Kg(z) =exp (—7)
100_
1072 | \
1074 -
1076
—— v=0.5 B=1.0
g | — v=1,B8=2
10°9 __ =2 p=a
— v=4, =4
—— v=8, =4
10t 10 103

19



< Omin > (normalized)
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Same result with points on regular lattice or random hypersphere?

What matters is how nearest-neighbor distance § scales with n

»
X
RN
ol

4x107"

dir = 14.43
din, = 15.00
Random d=35
dsir = 28.67
din, = 35.00
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(conjecture)

1
O ~ nd

In both cases

Finite size effects:
asymptotic scaling only
when n is large enough

20



What about real data?
— second order approximation with a Gaussian process Kr:

does it capture some aspects?

21



What about real data?
— second order approximation with a Gaussian process Kr:

does it capture some aspects?

e (Gaussian processes are s-times (mean-square) differentiable,

aT—d

21



What about real data?
— second order approximation with a Gaussian process Kr:

does it capture some aspects?

e (Gaussian processes are s-times (mean-square) differentiable,

__ ar—d
§= 73

e Fitted exponents are 8 ~ 0.4 (MNIST) and 8 ~ 0.1 (CIFAR10),
regardless of the Student — g = 224 @

(since B = I min(ar — d,2as) indep. of ag — B = 22-4)

21
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What about real data?
— second order approximation with a Gaussian process Kr:

does it capture some aspects?

e (Gaussian processes are s-times (mean-square) differentiable,

__ ar—d
§= 73

e Fitted exponents are 8 ~ 0.4 (MNIST) and 8 ~ 0.1 (CIFAR10),
regardless of the Student — g = 224 @

(since 8 = émin(afp —d,2ag) indep. of ag — B = O‘%‘Z_d)
— s = 1fd, s ~ 0.2d ~ 156 (MNIST) and s =~ 0.05d ~ 153 (CIFAR10)

This number is unreasonably large! @ 3



e Measure NN-distance §

S 5 ~ 7, Some exponent

—— MNIST -

——- Random d=15

— CIFAR10

——- Random d=35

10 10° 10 10 10°
n

22
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e Measure NN-distance §

Py 5 ~ 7, Some exponent

|

\_\.
=
~

— MNIST T 3

——- Random d=15

— CIFAR10

——- Random d=35

10’ 10° 10 10 10°
n

. . . . _ 1
Define effective dimension as § ~ n =

22




—t— =
r —>‘—w  (
il L\

1 7 N0 A= I 1 |
‘ YA - M \ [ - !‘ 3 w N Sy ‘ f I\
(,‘ L/‘ , = ‘ = | N v “: ] \\‘,,‘ \/ | I 4 | \;,,‘

e Measure NN-distance §

® § ~ p—Some exponent

\_\.
~=
~N
~

— MNIST T
—-—- Random d=15
—— CIFAR10
\L —-—- Random d=35
10" 10° 10° 10" 10°

. . . . _ 1
Define effective dimension as § ~ n =

B d
MNIST 0.4 784
CIFAR10 0.1 3072

d.er 1S much smaller

/!

def S = L% 5deffj
15 3
35

/ 1

s IS more reasonable! 22




e | oosely speaking, the (optimal) exponent is

/8 , smoothness ar—d=2s
™~ manifold dimension d

e To avoid the curse of dimensionality (8 ~ 3):

m either the dimension of the manifold is small

= or the data are extremely smooth

23



e |ndeed, what happens if we consider a field Zy(x) that

® jS an instance of a Teacher Kr (ar)
m |ies in the RKHS of a Student Ky (aus)

24



e |ndeed, what happens if we consider a field Zy(x) that

® jS an instance of a Teacher Kr (ar)
m |ies in the RKHS of a Student Ky (aus)
Er|Zr|ks =

¢ — ar > og +d
ET f ddgddy ZT(E)Ksl(g, y)ZT(g) _ T S

[dzd?y Kr(z,y)Kg' (z,y) < oo

24



e |ndeed, what happens if we consider a field Zy(x) that

® jS an instance of a Teacher Kr (ar)
m |ies in the RKHS of a Student Ky (aus)
Er|Zr|ks =

- — ar > oag +d
Er [ d%zd%y Zp(z)Ky 1(96 Y)Zr(y )— roms

[ d%zd?y K7 (z,y)Kg' (z,y) <

KS(Q)OCfdQKS(M)<OO — ag > d
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e |ndeed, what happens if we consider a field Zy(x) that

® jS an instance of a Teacher Kr (ar)
m |ies in the RKHS of a Student Ky (aus)
Er|Zr|ks =

Er J dlad'y 2 (@)K (2,9) 21y V- =  er>ostd
[ dlzdiy Kr(z,y)Kg' (z,y) <
KS(Q)OCfdQKS(M)<OO — ag > d

(it scales with d!)

Therefore the smoothness must be s = 224 > ¢

—>ﬁ>% 24



Assume that the data are not smooth enough and live in d large

Dimensionality reduction in the task rather than in the data?

E.g. the n points z, live in R?, but the target function is such that

ZT(Q) — ZT(QH) = ZT(ajla <. ,de), dH <d

Similar setting studied in Bach 2017

Can kernels understand the lower dimensional structure?

25



Theorem (informal formulation):

in the described setting with d; < d,

forn=1  e~n? with [8=1min(ar - d,2as)

Regardless of d!

Similar result in Bach 2017

Two reasons contribute to this result;

. . 1
e the nearest-neighbor distance always scalesas § ~ n™a

* ar(d) — d only depends on the function Kr(z) and not on d

26



TASK INVARIANCE: KERNEL REGRESSION (2/2)

Teacher = Matérn (with parameter v), Student = Laplace,

10t 102 103 104

d=4

27
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Classification with the margin SVM algorithm:

j(z) = sign [Zzzl e K ( = ) N b}

find {c,}, b by minimizing some function

We consider a very simple setting:

. Non-Gaussian data!
e the labelisy(z) = y(z1) — dj =1

band
hyperplane i i + *
S - - ot
L + 5 +
- +
: + -
L1) +
ot R - + o, +
+ + + + -
+ o+
+
+ +



Vary kernel scale 0 — two regimes!

® o < 4. then the estimator is tantamount to a nearest-neighbor
algorithm — curse of dimensionality 8 = %

* o> 4:important correlations in ¢, due to the long-range
kernel. For the hyperplane with d; = 1 we find 8 = O(d°)!

No curse of dimensionality!

29



THE NEAREST-NEIGHBOR LIMIT

hyperplane
interface

using a Laplace kernel
and
varying the dimension d:

test error




When o > § we can expand the kernel overlaps:

3
K ( l2—2'] ) ~K (0) — const x ( l2-2" )
(the exponent ¢ is linked to the smoothness of the kernel)

We can derive some scaling arguments that lead to an exponent

_ d+é-1
P=s3res3

31



When o > § we can expand the kernel overlaps:

H H 3
K ( l2—2'] ) ~K (0) — const x ( l2-2" )

(the exponent ¢ is linked to the smoothness of the kernel)

We can derive some scaling arguments that lead to an exponent

Y A
B = 3d+£—3

|dea:

® support vectors (¢, # 0) are close to the interface
e we impose that the decision boundary has O(1) spatial fluctuations on a scale

proportional to §
31



KERNEL CORRELATIONS (2/2)

Laplace kernel £ =1 Matérn kernels ¢ = min(2v, 2
1[}‘1? -
S S
hyperplane 7 B 102
4 1[}_2 : +— 1
10 10 n 10°
_ d+€-1
s B = 3d+£—3
band v :
£ in all these cases!
102 4
- 32




KERNEL CORRELATIONS: HYPERSPHERE ;

What about other interfaces?

boundary = hypersphere:

y(z) = sign(|z| — R)
(d) =1)

_dte-1
B = sare3

(same exponent!)

(similar scaling arguments apply,
provided R > 9)

test error

10-1 4

10-2 -




arXiv:1905.10843 + paper to be released soon!

Learning curves of real data decay as power laws with exponents

1 1

d < 5 <3
We introduce a new framework that links the exponent g to the degree
of smoothness of Gaussian random data

We justify how different kernels can lead to the same exponent s

We show that the effective dimension of real data is <« d. It can be
linked to a (small) effective smoothness s

We show that kernel regression is not able to capture invariants in the
task, while kernel classification can

(in some regime and for smooth interfaces)


https://arxiv.org/abs/1905.10843

