KERNEL METHODS

AND THE

CURSE OF DIMENSIONALITY

arXiv:1905.10843

Stefano Spigler

Jonas Paccolat, Mario Geiger, Matthieu Wyart

SUPERVISED DEEP LEARNING

- Why and how does deep supervised learning work?
- Learn from examples: how many are needed?
- Typical tasks:
- Regression (fitting functions)
- Classification

LEARNING CURVES

- Performance is evaluated through the generalization error ϵ
- Learning curves decay with number of examples n, often as

$$
\epsilon \sim n^{-\beta}
$$

- β depends on the dataset and on the algorithm

Deep networks: $\beta \sim 0.07-0.35$ [Hestness et al. 2017]

We lack a theory for β for deep networks!

LINK WITH KERNEL LEARNING

- Performance increases with overparametrization
[Neyshabur et al. 2017, 2018, Advani and Saxe 2017] [Spigler et al. 2018, Geiger et al. 2019, Belkin et al. 2019]
\longrightarrow study the infinite-width limit!
[Mei et al. 2017, Rotskoff and Vanden-Eijnden 2018, Jacot et al. 2018, Chizat and Bach 2018, ...]

LINK WITH KERNEL LEARNING

- Performance increases with overparametrization
[Neyshabur et al. 2017, 2018, Advani and Saxe 2017] [Spigler et al. 2018, Geiger et al. 2019, Belkin et al. 2019]
\longrightarrow study the infinite-width limit!
[Mei et al. 2017, Rotskoff and Vanden-Eijnden 2018, Jacot et al. 2018, Chizat and Bach 2018, ...]

- With a specific scaling, infinite-width limit \rightarrow kernel learning
[Jacot et al. 2018]
(next slides)

OUTLINE

- Very brief introduction to kernel methods
- Performance of kernels on real data
- Gaussian data: Teacher-Student regression
- Gaussian approximation: smoothness and effective dimension
- Dimensional reduction via invariants in the task

KERNEL METHODS

- Kernel methods learn non-linear functions or boundaries
- Map data to a feature space, where the problem is linear data $\underline{x} \longrightarrow \phi(\underline{x}) \longrightarrow$ use linear combination of features

KERNEL METHODS

- Kernel methods learn non-linear functions or boundaries
- Map data to a feature space, where the problem is linear data $\underline{x} \longrightarrow \phi(\underline{x}) \longrightarrow$ use linear combination of features
only scalar products are needed: $\phi(\underline{x}) \cdot \underline{\underline{x}} \underline{x}^{\prime}$

kernel $K\left(\underline{x}, \underline{x}^{\prime}\right)$

KERNEL METHODS

- Kernel methods learn non-linear functions or boundaries
- Map data to a feature space, where the problem is linear data $\underline{x} \longrightarrow \phi(\underline{x}) \longrightarrow$ use linear combination of features only scalar products are needed: $\left.\phi(\underline{x}) \cdot \underline{\underline{x}} \underline{x}^{\prime}\right)$

$$
\text { kernel } K\left(\underline{x}, \underline{x}^{\prime}\right)
$$

Gaussian:

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{\sigma^{2}}\right)
$$

Laplace:

$$
K\left(\underline{x}, x^{\prime}\right)=\exp \left(-\frac{|x| \underline{x}^{\prime} \mid}{\sigma}\right)
$$

KERNEL REGRESSION

E.g. kernel regression:

- Target function $\underline{x}_{\mu} \rightarrow Z\left(\underline{x}_{\mu}\right), \mu=1, \ldots, n$

KERNEL REGRESSION

E.g. kernel regression:

- Target function $\underline{x}_{\mu} \rightarrow Z\left(\underline{x}_{\mu}\right), \mu=1, \ldots, n$
- Build an estimator $\hat{Z}_{K}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K\left(\underline{x}_{\mu}, \underline{x}\right)$

KERNEL REGRESSION

E.g. kernel regression:

- Target function $\underline{x}_{\mu} \rightarrow Z\left(\underline{x}_{\mu}\right), \mu=1, \ldots, n$
- Build an estimator $\hat{Z}_{K}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K\left(\underline{x}_{\mu}, \underline{x}\right)$
- Minimize training MSE $=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{K}\left(\underline{x}_{\mu}\right)-Z\left(\underline{x}_{\mu}\right)\right]^{2}$

KERNEL REGRESSION

E.g. kernel regression:

- Target function $\underline{x}_{\mu} \rightarrow Z\left(\underline{x}_{\mu}\right), \mu=1, \ldots, n$
- Build an estimator $\hat{Z}_{K}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K\left(\underline{x}_{\mu}, \underline{x}\right)$
- Minimize training MSE $=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{K}\left(\underline{x}_{\mu}\right)-Z\left(\underline{x}_{\mu}\right)\right]^{2}$
- Estimate the generalization error $\epsilon=\mathbb{E}_{\underline{x}}\left[\hat{Z}_{K}(\underline{x})-Z(\underline{x})\right]^{2}$

REPRODUCING KERNEL HILBERT SPACE (RKHS)

A kernel K induces a corresponding Hilbert space \mathcal{H}_{K} with norm

$$
\|Z\|_{K}=\int \mathrm{d} \underline{x} \mathrm{~d} \underline{y} Z(\underline{x}) K^{-1}(\underline{x}, \underline{y}) Z(\underline{y})
$$

where $K^{-1}(\underline{x}, \underline{y})$ is such that

$$
\int \mathrm{d} \underline{y} K^{-1}(\underline{x}, \underline{y}) K(\underline{y}, \underline{z})=\delta(\underline{x}, \underline{z})
$$

\mathcal{H}_{K} is called the Reproducing Kernel Hilbert Space (RKHS)

Regression: performance depends on the target function!

PREVIOUS WORKS

Regression: performance depends on the target function!

- If only assumed to be Lipschitz, then $\beta=\frac{1}{d}$

Curse of dimensionality!
[Luxburg and Bousquet 2004]

PREVIOUS WORKS

Regression: performance depends on the target function!

```
d= dimension of the input space
```

- If only assumed to be Lipschitz, then $\beta=\frac{1}{d}$

Curse of dimensionality!
[Luxburg and Bousquet 2004]

- If assumed to be in the RKHS, then $\beta \geq \frac{1}{2}$ does not depend on d
[Smola et al. 1998, Rudi and Rosasco 2017]

PREVIOUS WORKS

Regression: performance depends on the target function!

```
d= dimension of the input space
```

- If only assumed to be Lipschitz, then $\beta=\frac{1}{d}$

Curse of dimensionality!
[Luxburg and Bousquet 2004]

- If assumed to be in the RKHS, then $\beta \geq \frac{1}{2}$ does not depend on d [Smola et al. 1998, Rudi and Rosasco 2017]
- Yet, RKHS is a very strong assumption on the smoothness of the target function (see later on)

REAL DATA AND ALGORITHMS

We apply kernel methods on

MNIST
2 classes: even/odd
70000 28x28 b/w pictures
dimension $d=784$

Num: 5

- Same exponent for regression and classification
- Same exponent for Gaussian and Laplace kernel
- MNIST and CIFAR10 display exponents $\beta \gg \frac{1}{d}$ but $<\frac{1}{2}$

We need a new framework!

```
n
```

- Same exponent for regression and classification
- Same exponent for Gaussian and Laplace kernel
- MNIST and CIFAR10 display exponents $\beta \gg \frac{1}{d}$ but $<\frac{1}{2}$

KERNEL TEACHER-STUDENT FRAMEWORK

- Controlled setting: Teacher-Student regression

KERNEL TEACHER-STUDENT FRAMEWORK

- Controlled setting: Teacher-Student regression
- Training data are sampled from a Gaussian Process:
$Z_{T}\left(\underline{x}_{1}\right), \ldots, Z_{T}\left(\underline{x}_{n}\right) \sim \mathcal{N}\left(0, K_{T}\right)$
\underline{x}_{μ} are random on a \boldsymbol{d}-dim hypersphere

KERNEL TEACHER-STUDENT FRAMEWORK

- Controlled setting: Teacher-Student regression
- Training data are sampled from a Gaussian Process:
$Z_{T}\left(\underline{x}_{1}\right), \ldots, Z_{T}\left(\underline{x}_{n}\right) \sim \mathcal{N}\left(0, K_{T}\right)$
\underline{x}_{μ} are random on a d-dim hypersphere

$$
\mathbb{E} Z_{T}\left(\underline{x}_{\mu}\right)=0
$$

$$
\mathbb{E} Z_{T}\left(\underline{x}_{\mu}\right) Z_{T}\left(\underline{x}_{\nu}\right)=K_{T}\left(\left\|\underline{x}_{\mu}-\underline{x}_{\nu}\right\|\right)
$$

KERNEL TEACHER-STUDENT FRAMEWORK

- Controlled setting: Teacher-Student regression
- Training data are sampled from a Gaussian Process:

$$
\begin{aligned}
& Z_{T}\left(\underline{x}_{1}\right), \ldots, Z_{T}\left(\underline{x}_{n}\right) \sim \mathcal{N}\left(0, K_{T}\right) \\
& \underline{x}_{\mu} \text { are random on a } \boldsymbol{d} \text {-dim hypersphere } \begin{array}{r}
\\
\\
\\
\\
\\
\mathbb{E} Z_{T}\left(\underline{x}_{\mu}\right) Z_{T}\left(\underline{x}_{\nu}\right)=K_{T}\left(\| \underline{x}_{\mu}\right)=0 \\
\left.\underline{x}_{\mu}-\underline{x}_{\nu} \|\right)
\end{array}
\end{aligned}
$$

- Regression is done with another kernel K_{S}

TEACHER-STUDENT: SIMULATIONS

Can we understand these curves?

TEACHER-STUDENT: REGRESSION

Regression:

$$
\hat{Z}_{S}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

Minimize $=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{S}\left(\underline{x}_{\mu}\right)-Z_{T}\left(\underline{x}_{\mu}\right)\right]^{2}$

Explicit solution:

$\hat{Z}_{S}(\underline{x})=\underline{k}_{S}(\underline{x}) \cdot \mathbb{K}_{S}^{-1} \underline{Z} \quad$ where

TEACHER-STUDENT: REGRESSION

Regression:

$$
\hat{Z}_{S}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

Minimize $=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{S}\left(\underline{x}_{\mu}\right)-Z_{T}\left(\underline{x}_{\mu}\right)\right]^{2}$

Explicit solution:

$\hat{Z}_{S}(\underline{x})=\underline{k}_{S}(\underline{x}) \cdot \mathbb{K}_{S}^{-1} \underline{Z}_{T} \quad$ where

$$
\left(\underline{k}_{S}(\underline{x})\right)_{\mu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

TEACHER-STUDENT: REGRESSION

Regression:

$$
\hat{Z}_{S}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

$$
\text { Minimize }=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{S}\left(\underline{x}_{\mu}\right)-Z_{T}\left(\underline{x}_{\mu}\right)\right]^{2}
$$

Explicit solution:

$\hat{Z}_{S}(\underline{x})=\underline{k}_{S}(\underline{x}) \cdot \mathbb{K}_{S}^{-1} Z_{T}$

$$
\left(\underline{k}_{S}(\underline{x})\right)_{\mu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

kernel overlap
where
$\left(\mathbb{K}_{S}\right)_{\mu \nu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}_{\nu}\right)$

TEACHER-STUDENT: REGRESSION

Regression:

$$
\hat{Z}_{S}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

$$
\text { Minimize }=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{S}\left(\underline{x}_{\mu}\right)-Z_{T}\left(\underline{x}_{\mu}\right)\right]^{2}
$$

Explicit solution:

$\hat{Z}_{S}(\underline{x})=\underline{k}_{S}(\underline{x}) \cdot \mathbb{K}_{S}^{-1} \underline{Z}_{T} \quad$ where

$$
\left(\underline{k}_{S}(\underline{x})\right)_{\mu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

kernel overlap

$$
\left(\mathbb{K}_{S}\right)_{\mu \nu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}_{\nu}\right)
$$

Gram matrix

$$
\left(\underline{Z}_{T}\right)_{\mu}=Z_{T}\left(\underline{x}_{\mu}\right)_{\text {training data }}
$$

TEACHER-STUDENT: REGRESSION

Regression:

$$
\hat{Z}_{S}(\underline{x})=\sum_{\mu=1}^{n} c_{\mu} K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

$$
\text { Minimize }=\frac{1}{n} \sum_{\mu=1}^{n}\left[\hat{Z}_{S}\left(\underline{x}_{\mu}\right)-Z_{T}\left(\underline{x}_{\mu}\right)\right]^{2}
$$

Explicit solution:

$\hat{Z}_{S}(\underline{x})=\underline{k}_{S}(\underline{x}) \cdot \mathbb{K}_{S}^{-1} \underline{Z}_{T} \quad$ where

$$
\left(\underline{k}_{S}(\underline{x})\right)_{\mu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}\right)
$$

kernel overlap

$$
\left(\mathbb{K}_{S}\right)_{\mu \nu}=K_{S}\left(\underline{x}_{\mu}, \underline{x}_{\nu}\right)
$$

Gram matrix

$$
\left(\underline{Z}_{T}\right)_{\mu}=Z_{T}\left(\underline{x}_{\mu}\right)_{\text {training data }}
$$

Compute the generalization error ϵ and how it scales with n

$$
\epsilon=\mathbb{E}_{T} \int \mathrm{~d}^{d} \underline{x}\left[\hat{Z}_{S}(\underline{x})-Z_{T}(\underline{x})\right]^{2} \sim n^{-\beta}
$$

TEACHER-STUDENT: THEOREM (1/2)

To compute the generalization error:

- We look at the problem in the frequency domain
- We assume that $\tilde{K}_{S}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{S}}$ and $\tilde{K}_{T}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{T}}$ as $\|\underline{w}\| \rightarrow \infty$

TEACHER-STUDENT: THEOREM (1/2)

To compute the generalization error:

- We look at the problem in the frequency domain
- We assume that $\tilde{K}_{S}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{S}}$ and $\tilde{K}_{T}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{T}}$ as $\|\underline{w}\| \rightarrow \infty$

$$
\text { E.g. Laplace has } \alpha=d+1 \text { and Gaussian has } \alpha=\infty
$$

TEACHER-STUDENT: THEOREM (1/2)

To compute the generalization error:

- We look at the problem in the frequency domain
- We assume that $\tilde{K}_{S}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{S}}$ and $\tilde{K}_{T}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{T}}$ as $\|\underline{w}\| \rightarrow \infty$

$$
\text { E.g. Laplace has } \alpha=d+1 \text { and Gaussian has } \alpha=\infty
$$

- SIMPLIFYING ASSUMPTION: We take the n points \underline{x}_{μ} on a regular d-dim lattice!

TEACHER-STUDENT: THEOREM (1/2)

To compute the generalization error:

- We look at the problem in the frequency domain
- We assume that $\tilde{K}_{S}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{S}}$ and $\tilde{K}_{T}(\underline{w}) \sim\|\underline{w}\|^{-\alpha_{T}}$ as $\|\underline{w}\| \rightarrow \infty$

$$
\text { E.g. Laplace has } \alpha=d+1 \text { and Gaussian has } \alpha=\infty
$$

- SIMPLIFYING ASSUMPTION: We take the n points \underline{x}_{μ} on a regular d-dim lattice!

Then we can show that
for $n \gg 1$
$\epsilon \sim n^{-\beta} \quad$ with

$$
\beta=\frac{1}{d} \min \left(\alpha_{T}-d, 2 \alpha_{S}\right)
$$

$$
\beta=\frac{1}{d} \min \left(\alpha_{T}-d, 2 \alpha_{S}\right)
$$

- Large $\alpha \rightarrow$ fast decay at high freq \rightarrow indifference to local details
- α_{T} is intrinsic to the data (T), α_{S} depends on the algorithm (S)
- If α_{S} is large enough, β takes the largest possible value $\frac{\alpha_{T}-d}{d}$ (optimal learning)
- As soon as α_{S} is small enough, $\beta=\frac{2 \alpha_{S}}{d}$

TEACHER-STUDENT: COMPARISON (1/2)

What is the prediction for our simulations?

$$
\beta=\frac{1}{d} \min \left(\alpha_{T}-d, 2 \alpha_{S}\right)
$$

- If Teacher=Student=Laplace
$\left(\alpha_{T}=\alpha_{S}=d+1\right)$

$$
\beta=\frac{\alpha_{T}-d}{d}=\frac{1}{d}
$$

(curse of dimensionality!)

- If Teacher=Gaussian, Student=Laplace

$$
\left(\alpha_{T}=\infty, \alpha_{S}=d+1\right)
$$

$$
\beta=\frac{2 \alpha_{S}}{d}=2+\frac{2}{d}
$$

TEACHER-STUDENT: COMPARISON (2/2)

- Our result matches the numerical simulations
(on hypersphere)
- There are finite size effects (small n)

TEACHER-STUDENT: MATÉRN TEACHER

Matérn kernels: $\quad K_{T}(\underline{x})=\frac{2^{1-\nu}}{\Gamma(\nu \nu} z^{\nu} \mathcal{K}_{\nu}(z), \quad z=\sqrt{2 \nu} \frac{|x|}{\sigma}, \quad \alpha=d+2 \nu$ Laplace student, $\quad K_{S}(\underline{x})=\exp \left(-\frac{|x|}{\sigma}\right)$

$$
d=1
$$

$\beta=\min (2 \nu, 4)$

NEAREST-NEIGHBOR DISTANCE

Same result with points on regular lattice or random hypersphere?

What matters is how nearest-neighbor distance $\boldsymbol{\delta}$ scales with n
(conjecture)

In both cases $\delta \sim n^{\frac{1}{d}}$

Finite size effects: asymptotic scaling only when n is large enough

BACK TOREAL DATA

What about real data?

\longrightarrow second order approximation with a Gaussian process K_{T} : does it capture some aspects?

BACK TOREAL DATA

What about real data?

\longrightarrow second order approximation with a Gaussian process K_{T} : does it capture some aspects?

- Gaussian processes are s-times (mean-square) differentiable,

$$
s=\frac{\alpha_{T}-d}{2}
$$

BACK TOREAL DATA

What about real data?

\longrightarrow second order approximation with a Gaussian process K_{T} : does it capture some aspects?

- Gaussian processes are s-times (mean-square) differentiable,

$$
s=\frac{\alpha_{T}-d}{2}
$$

- Fitted exponents are $\beta \approx 0.4$ (MNIST) and $\beta \approx 0.1$ (CIFAR10), regardless of the Student $\longrightarrow \beta=\frac{\alpha_{T}-d}{d}$
(since $\beta=\frac{1}{d} \min \left(\alpha_{T}-d, 2 \alpha_{S}\right)$ indep. of $\alpha_{S} \longrightarrow \beta=\frac{\alpha_{T}-d}{d}$)

BACK TOREAL DATA

What about real data?
\longrightarrow second order approximation with a Gaussian process K_{T} : does it capture some aspects?

- Gaussian processes are s-times (mean-square) differentiable,

$$
s=\frac{\alpha_{T}-d}{2}
$$

- Fitted exponents are $\beta \approx 0.4$ (MNIST) and $\beta \approx 0.1$ (CIFAR10), regardless of the Student $\longrightarrow \beta=\frac{\alpha_{T}-d}{d}$
(since $\beta=\frac{1}{d} \min \left(\alpha_{T}-d, 2 \alpha_{S}\right)$ indep. of $\alpha_{S} \longrightarrow \beta=\frac{\alpha_{T}-d}{d}$)
$\longrightarrow s=\frac{1}{2} \beta d, s \approx 0.2 d \approx 156(\mathrm{MNIST})$ and $s \approx 0.05 d \approx 153$ (CIFAR10)

EFFECTIVE DIMENSION

- Measure NN-distance δ
- $\delta \sim n^{- \text {some exponent }}$

EFFECTIVE DIMENSION

- Measure NN-distance δ
- $\delta \sim n^{- \text {some exponent }}$

Define effective dimension as $\delta \sim n^{-\frac{1}{d_{\text {eff }}}}$

EFFECTIVE DIMENSION

- Measure NN-distance δ
- $\delta \sim n^{- \text {some exponent }}$

Define effective dimension as $\delta \sim n^{-\frac{1}{d_{\text {eff }}}}$
$d_{\text {eff }}$ is much smaller

	β	d	$d_{\text {eff }}$	$s=\left\lfloor\frac{1}{2} \beta d_{\text {eff }}\right\rfloor$
MNIST	0.4	784	15	3
CIFAR10	0.1	3072	35	1

CURSE OF DIMENSIONALITY (1/2)

- Loosely speaking, the (optimal) exponent is

$$
\beta \approx \frac{\text { smoothness } \alpha_{T}-d=2 s}{\text { manifold dimension } d}
$$

- To avoid the curse of dimensionality ($\beta \sim \frac{1}{d}$):
- either the dimension of the manifold is small
- or the data are extremely smooth

RKHS \& SMOOTHNESS

- Indeed, what happens if we consider a field $Z_{T}(\underline{x})$ that
- is an instance of a Teacher K_{T} $\left(\alpha_{T}\right)$
- lies in the RKHS of a Student $K_{S} \quad\left(\alpha_{S}\right)$

RKHS \& SMOOTHNESS

- Indeed, what happens if we consider a field $Z_{T}(\underline{x})$ that
- is an instance of a Teacher K_{T}
- lies in the RKHS of a Student K_{S}

$$
\begin{gathered}
\mathbb{E}_{T}\left\|Z_{T}\right\|_{K_{S}}= \\
\mathbb{E}_{T} \int \mathrm{~d}^{d} \underline{x} \mathrm{~d}^{d} \underline{y} Z_{T}(\underline{x}) K_{S}^{-1}(\underline{x}, \underline{y}) Z_{T}(\underline{y})= \\
\int \mathrm{d}^{d} \underline{x} \mathrm{~d}^{d} \underline{y} K_{T}(\underline{x}, \underline{y}) K_{S}^{-1}(\underline{x}, \underline{y})<\infty
\end{gathered}
$$

$$
\Longrightarrow \quad \alpha_{T}>\alpha_{S}+d
$$

RKHS \& SMOOTHNESS

- Indeed, what happens if we consider a field $Z_{T}(\underline{x})$ that
- is an instance of a Teacher K_{T}
- lies in the RKHS of a Student K_{S}

$$
\begin{array}{ccc}
\mathbb{E}_{T}\left\|Z_{T}\right\|_{K_{S}}= & & \\
\mathbb{E}_{T} \int \mathrm{~d}^{d} \underline{x} \mathrm{~d}^{d} \underline{y} Z_{T}(\underline{x}) K_{S}^{-1}(\underline{x}, \underline{y}) Z_{T}(\underline{y})= & \Longrightarrow & \alpha_{T}>\alpha_{S}+d \\
\int \mathrm{~d}^{d} \underline{\mathrm{~d}^{d}} \underline{y} K_{T}(\underline{x}, \underline{y}) K_{S}^{-1}(\underline{x}, \underline{y})<\infty & & \\
K_{S}(\underline{0}) \propto \int \mathrm{d} \underline{w} \tilde{K}_{S}(\underline{w})<\infty & \Longrightarrow & \alpha_{S}>d
\end{array}
$$

RKHS \& SMOOTHNESS

- Indeed, what happens if we consider a field $Z_{T}(\underline{x})$ that
- is an instance of a Teacher K_{T}
- lies in the RKHS of a Student K_{S}

$$
\begin{array}{ccc}
\mathbb{E}_{T}\left\|Z_{T}\right\|_{K_{S}}= & & \\
\mathbb{E}_{T} \int \mathrm{~d}^{d} \underline{x} \mathrm{~d}^{d} \underline{y} Z_{T}(\underline{x}) K_{S}^{-1}(\underline{x}, \underline{y}) Z_{T}(\underline{y})= & & \alpha_{T}>\alpha_{S}+d \\
\int \mathrm{~d}^{d} \underline{x} \mathrm{~d}^{d} \underline{y} K_{T}(\underline{x}, \underline{y}) K_{S}^{-1}(\underline{x}, \underline{y})<\infty & & \\
K_{S}(\underline{0}) \propto \int \mathrm{d} \underline{w} \tilde{K}_{S}(\underline{w})<\infty & \Longrightarrow & \alpha_{S}>d
\end{array}
$$

(it scales with $d!$)
Therefore the smoothness must be $s=\frac{\alpha_{T}-d}{2}>\frac{d}{2}$

CURSE OF DIMENSIONALITY (2/2)

- Assume that the data are not smooth enough and live in d large
- Dimensionality reduction in the task rather than in the data?
- E.g. the n points \underline{x}_{μ} live in \mathbb{R}^{d}, but the target function is such that

$$
\begin{aligned}
Z_{T}(\underline{x})= & Z_{T}\left(\underline{x}_{\|}\right) \equiv Z_{T}\left(x_{1}, \ldots, x_{d_{\|}}\right), \quad d_{\|}<d \\
& \text { Similar setting studied in Bach } 2017
\end{aligned}
$$

- Can kernels understand the lower dimensional structure?

TASK INVARIANCE: KERNEL REGRESSION (1/2)

Theorem (informal formulation):
in the described setting with $d_{\|} \leq d$,
for $n \gg 1$

$$
\begin{array}{r}
\epsilon \sim n^{-\beta} \quad \text { with } \beta=\frac{1}{d} \min (\alpha \\
\\
\text { Regardless of } d_{\|}!
\end{array}
$$

Similar result in Bach 2017
Two reasons contribute to this result:

- the nearest-neighbor distance always scales as $\delta \sim n^{-\frac{1}{d}}$
- $\alpha_{T}(d)-d$ only depends on the function $K_{T}(z)$ and not on d

TASK INVARIANCE: KERNEL REGRESSION (2/2)

Teacher $=$ Matérn (with parameter ν), Student $=$ Laplace, $\quad d=4$

TASK INVARIANCE: CLASSIFICATION (1/2)

Classification with the margin SVM algorithm:

$$
\hat{y}(\underline{x})=\operatorname{sign}\left[\sum_{\mu=1}^{n} c_{\mu} K\left(\frac{\left\|\underline{x}-\underline{x}^{\mu}\right\|}{\sigma}\right)+b\right]
$$

find $\left\{c_{\mu}\right\}, b$ by minimizing some function
We consider a very simple setting:

- the label is $y(\underline{x})=y\left(x_{1}\right) \longrightarrow d_{\|}=1$

Non-Gaussian data!

TASK INVARIANCE: CLASSIFICATION (2/2)

Vary kernel scale $\sigma \longrightarrow$ two regimes!

- $\sigma \ll \delta$: then the estimator is tantamount to a nearest-neighbor algorithm \longrightarrow curse of dimensionality $\beta=\frac{1}{d}$
- $\sigma \gg \delta$: important correlations in c_{μ} due to the long-range kernel. For the hyperplane with $d_{\|}=1$ we find $\beta=\mathcal{O}\left(d^{0}\right)$!

No curse of dimensionality!

THE NEAREST-NEIGHBOR LIMIT

hyperplane interface
using a Laplace kernel
and
varying the dimension d :

$$
\beta=\frac{1}{d}
$$

KERNEL CORRELATIONS (1/2)

When $\sigma \gg \delta$ we can expand the kernel overlaps:

$$
K\left(\frac{\mid \underline{x}-\underline{x}^{\mu} \|}{\sigma}\right) \approx K(0)-\mathrm{const} \times\left(\frac{\| \underline{x}-\underline{x}^{\mu} \mid}{\sigma}\right)^{\xi}
$$

(the exponent ξ is linked to the smoothness of the kernel)

We can derive some scaling arguments that lead to an exponent

$$
\beta=\frac{d+\xi-1}{3 d+\xi-3}
$$

KERNEL CORRELATIONS (1/2)

When $\sigma \gg \delta$ we can expand the kernel overlaps:

$$
K\left(\frac{\left\|\underline{x}-\underline{x}^{\mu}\right\|}{\sigma}\right) \approx K(0)-\mathrm{const} \times\left(\frac{\left\|\underline{x}-\underline{x}^{\mu}\right\|}{\sigma}\right)^{\xi}
$$

(the exponent ξ is linked to the smoothness of the kernel)

We can derive some scaling arguments that lead to an exponent

$$
\beta=\frac{d+\xi-1}{3 d+\xi-3}
$$

Idea:

- support vectors $\left(c_{\mu} \neq 0\right)$ are close to the interface
- we impose that the decision boundary has $\mathcal{O}(1)$ spatial fluctuations on a scale proportional to δ

KERNEL CORRELATIONS (2/2)

band

KERNEL CORRELATIONS: HYPERSPHERE

What about other interfaces?
boundary = hypersphere:

$$
\begin{gathered}
y(\underline{x})=\operatorname{sign}(\|\underline{x}\|-R) \\
\left(d_{\|}=1\right) \\
\beta=\frac{d+\xi-1}{3 d+\xi-3} \\
\text { (same exponent!) }
\end{gathered}
$$

(similar scaling arguments apply, provided $R \gg \delta$)

CONCLUSION arXiv:1905.10843 + paper to be released soon!

- Learning curves of real data decay as power laws with exponents

$$
\frac{1}{d} \ll \beta<\frac{1}{2}
$$

- We introduce a new framework that links the exponent β to the degree of smoothness of Gaussian random data
- We justify how different kernels can lead to the same exponent β
- We show that the effective dimension of real data is $\ll d$. It can be linked to a (small) effective smoothness s
- We show that kernel regression is not able to capture invariants in the task, while kernel classification can

