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Lateral connectivity within cortical areas is pervasive in the mammalian neo-

cortex. The lateral interaction between cortical minicolumns mediated by such

connections has been shown to play a critical role in cortical function and cog-

nition, and has been used to explain the emergence of large-scale patterns such

as cortical maps. Further evidence suggests that aspects of cortical representa-

tion of learnt sensory stimuli may be encoded in the synaptic strengths of lateral

connections.

This thesis builds upon a program of existing computational neuroscience

research, which has identified plasticity in lateral interactions as the key com-

ponent of cortical functional organisation, to ask whether a neurobiologically

plausible computational model of cortical self-organisation can be used to in-

vestigate how synaptic plasticity and adaptation in lateral cortical interactions

modifies the structure of pre-existing cortical representations and how it affects

their decoding.

The inhibitory sharpening theory is proposed, based on computer simulations,

that shows how repetition suppression is compatible with an increase in the

strength of the inhibitory interactions between cortical units co-active during

the presentation of the same adapter stimulus due to Hebbian learning. A key

prediction of the theory is then derived, that stimuli that produce overlapping

patterns of cortical activity, that is that activate a common sub-set of neurons,

may produce mutual interference that should be reflected both in changes to the

neural signal and in higher level cognition.

The predictions of the theory are tested with two approaches, a neuroimag-

ing experiment to measure the magnitude of repetition suppression in a protocol

compatible with that used in the simulations, and a behavioural experiment.
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Chapter 1

Introduction

One of the fundamental questions in neuroscience is understanding how the

brain builds and maintains representations of the world. A useful approach to

the problem is to study how the representation of sensory stimuli is encoded

in the patterns of neural activity in the nervous system and in its connectivity

(Pennartz, 2015).

The neocortex in particular is a good target for the study of the high-level

representation of stimuli as it correlates well with the cognitive capabilities of

the different mammalian species, and because the increase in human cognitive

capabilities seems to have resulted from a disproportionate increase in the size

of the cortical sheet during evolution.

Neuroscience has generated a large wealth of data (imaging, electrophysio-

logical, neuroanatomical) that describes cortical dynamics at different levels of

abstraction, and at different spatial and temporal scales (from perceptual to de-

velopmental timescales). One way to understand how these data fit together is

through computational modelling. This approach forces us to make explicit all

our assumptions about how the system works, and to make sensible assump-

tions to fill the gaps in our understanding. Simulation experiments then allow

to investigate questions at different levels of abstractions, and at different spatial

and temporal scales.

For example, computational modelling of cortical dynamics has been partic-

ularly successful at the level of cortical maps (Wilson and Bednar, 2015; Bednar
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and Wilson, 2015), leading to a mature theory of cortical development that can

be neatly summarised in a handful of equations, the L-model. As we will see

in the review presented in Chapter 2, these models capture the key biological

constraints on cortical development on timescales relevant for postnatal devel-

opment (days, weeks, months).

However, understanding how these theories, which have been calibrated to

developmental data, can be used on timescales relevant for perception and cog-

nition has only been addressed in a handful of recent studies. The results of

these studies have been successful at describing low-level perceptual process-

ing like visual after-effects (e.g. applied to the tilt aftereffect Bednar and Mi-

ikkulainen, 2000) and illusions (e.g., applied to the McCollough effect Spigler,

2014).

To work towards a complete theory of how humans form and maintain rep-

resentations of the world, we need to use these biologically grounded models

of cortical development, and derive predictions that can be tested at the level of

perception and cognition, and finally test those predictions directly. This is the

principal aim of of this thesis.

The critical feature of the models of cortical development used in this thesis

is plastic lateral interactions, that is interactions between units within the same

model cortical area mediated by connections that can be modified via synaptic

plasticity. The role of lateral interactions in the context of this thesis will be

outlined in the next section, before presenting a general overview of the thesis.

1.1 Lateral cortical interactions

Significant progress in modelling cortical dynamics has been achieved by study-

ing the role of recurrent connectivity within individual cortical areas and how

the strength of those connections changes over time due to cortical plasticity and
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learning (Sirosh, 1996; Miikkulainen et al., 2006; Stevens et al., 2013; Wilson et

al., 2010; Spigler, 2014; Fischer, 2014).

Lateral connections between neurons in the same cortical areas are pervasive

in the mammalian neocortex. It is also known that such lateral connections are

predominantly excitatory in the long-range, and inhibitory in the short-range,

and that such patterns of connectivity are organised in local patches (e.g., pri-

mary visual cortex (V1) in cats and primates (Fisken, Garey, and Powell, 1975;

Gilbert and Wiesel, 1989; Schwark and Jones, 1989; Bosking et al., 1997)). Long-

range inhibition may however be implemented via long-range excitation of local

inhibitory neurons, as is thought to be the case in e.g., primary visual cortex (V1)

for high-contrast visual inputs (Hirsch and Gilbert, 1991; Weliky et al., 1995; Ren

et al., 2007; Martin, 2002; Somers et al., 1998; Silberberg and Markram, 2007), and

primary somatosensory cortex (S1) for strong tactile inputs (Helmstaedter, Sak-

mann, and Feldmeyer, 2009; Moore, Nelson, and Sur, 1999). Indeed, in many

cases the actual effect of lateral interactions observed between cortical neurons

is thought to be long-range net-inhibitory and short-range net-excitatory (Wil-

son et al., 2010; Stevens et al., 2013).

Lateral interactions in the mammalian neocortex have been shown to play a

critical role in cortical processing. For example, they are thought to be critical for

neural information processing operations such as feature learning and decorre-

lation (Barlow and Foldiak, 1989; Dong, 1996), normalization and sharpening of

activity (Somers et al., 1996; Stemmler, Usher, and Niebur, 1995; Edelman, 1996;

Sabatini, 1996), associative encoding of features (Dong, 1996), illusory contours

and perceptual grouping (Choe, 2001) (for a complete overview, please refer to

Miikkulainen et al., 2006). Lateral interactions have been also used to explain

perceptual phenomena like the Hermann grid illusion (Hermann, 1870). In par-

ticular, learning decorrelated features, associative encoding of features and per-

ceptual grouping seem to require synaptic plasticity in the lateral interactions. A

computational study further evidenced the potential role of lateral plasticity in
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encoding category-specific information, aiding in the perceptual segmentation

and grouping of objects in a crowded scene (Evans and Stringer, 2015). More-

over, previous modeling studies have shown that plasticity and adaptation in

lateral inhibitory interactions can explain changes in perception like in visual

illusions such as the tilt aftereffect (Bednar and Miikkulainen, 2000) and the Mc-

Collough effect (Spigler, 2014). For example, in the tilt-aftereffect the strength of

the lateral inhibitory interactions between neurons selective to the orientation of

an adapter grating increase due to their co-activation (Hebbian plasticity). The

increase in the strength of the inhibitory interactions then results in a decrease

in the activation of those neurons on subsequent presentations of gratings at

similar orientations and a change in the pattern of activation that would other-

wise characterise them, finally producing a population-decoded perception that

is shifted away from the orientation of the target grating. The synaptic strengths

of lateral interactions thus seem to have an effect on the cortical representation

of sensory stimuli.

Lateral interactions between cortical neurons or local groups of neurons (e.g.,

cortical units such as cortical minicolumns) have been further used to explain

the development of broad patterns of neuronal feature selectivity observed in

a variety of cortical areas. Specifically, they have been shown to play a critical

role in models based on dynamics of self-organisation, that are capable of spon-

taneously producing ordered patterns from an initially disordered system. A

variety of models in this class have been successfully used to explain and pre-

dict experimental data (Malsburg, 1973; Miikkulainen et al., 2006; Stevens et al.,

2013).

In this thesis I build upon a program of existing computational neuroscience

research, which has identified plasticity in lateral interactions as the key com-

ponent of cortical functional organisation, to ask whether a neurobiologically

plausible computational model of cortical self-organisation can be used to in-

vestigate how synaptic plasticity and adaptation in lateral cortical interactions
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modifies the structure of pre-existing cortical representations and how it affects

their decoding. The thesis is composed as a mixture of modeling and exper-

imental work. The key component of the model used in this thesis is the as-

sumption that lateral interactions between cortical neurons are net inhibitory at

long range, and that those interactions adapt by Hebbian plasticity.

As in the previous works, this thesis will use computational modeling as a

way to formalise a theory of cortical function and to generate new predictions

to guide future experiments. The experiments presented to test the predictions

of the theory are then further used to bridge between low-level mechanisms

of cortical self-organisation and high-level computation such as cognition and

perception.

In particular, this thesis will explore how changes in the cortical represen-

tation of sensory stimuli due to plasticity and adaptation in lateral inhibitory

connections relates to both short-term dynamics, on the timescale of perceptual

illusions, and long-term effects, on the timescale of learning and memory.

Finally, this thesis will explore how the encoding of cortical representations

in the synaptic weights of lateral interactions may lead to interference between

distributed representations that share a large subset of neurons in the same cor-

tical areas, and in particular how plastic and adaptive changes due to the pre-

sentation of one stimulus may affect the perception of subsequent stimuli.

1.2 Organisation of the thesis

This thesis is organised as a sequence of theoretical and experimental works

building on top of each other. We start by reviewing a body of literature which

is beginning to converge on a model of cortical self-organisation that produces

patterns of distributed activity representing sensory stimuli. This model is then

extended to investigate the phenomenon of repetition suppression, resulting in
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the ‘inhibitory sharpening’ theory, and in novel, testable predictions. The pre-

dictions are finally tested by means of a neuroimaging study and a behavioural

experiment.

• Chapter 2 presents a literature review, which identifies input-driven self-

organisation as a theory of how functional organisation emerges in the

developing neocortex. This theory is presented formally, with its assump-

tions stated explicitly in terms of a small number of equations that enable

aspects of cortical development to be recreated in computer simulations.

The chapter is structured around a mixture of theoretical and experimental

developments that converge on a specific self-organising map algorithm,

the L-model, which explicitly models the contribution of plastic recurrent

interactions to the development of topographic maps in primate primary

visual cortex. It is further suggested that this low-level model of cortical

dynamics may be used to explain higher-level cognitive functions such as

perception and memory. This algorithm provides a starting point for the

development of the theoretical work to follow in chapter 3.

• Chapter 3 investigates whether the L-model can account for the phenomenon

of repetition suppression, presenting the results in the context of the novel

theory of “inhibitory sharpening”. Computer simulations are then used

to produce novel, testable predictions of the theory based on stimuli that

produce overlapping cortical representations, specifically that such stimuli

may be designed to interfere with one another in carefully designed exper-

imental protocols. The work presented in this chapter has been published

in PLoS ONE (Spigler and Wilson, 2017).

• Chapter 4 explores whether the interference between stimuli that produce

overlapping cortical representations predicted by the inhibitory sharpen-

ing theory can affect perception and behavior. The results of the experi-

ments presented are used to provide preliminary indirect support to the
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theory, without relying on an explicit measure of repetition suppression,

and are thus complementary to the neuroimaging investigation of Chapter

5.

• Chapter 5 aims at testing the predictions of the inhibitory sharpening the-

ory by measuring the magnitude of repetition suppression in the relevant

cortical areas with the use of functional neuroimaging (fMRI), and to in-

vestigate the predicted interference between stimuli that produce overlap-

ping cortical representations using an appropriate experimental protocol.

While the results are not conclusive, a trend in the data is observed in

agreement with the predictions of the inhibitory sharpening theory, sug-

gesting that further experiments with a larger sample size and similar ex-

perimental protocols should manage to draw stronger conclusions.

• Chapter 6 finally presents a summary of the dissertation and a discussion

of general points of interest related to the work that was presented.
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Chapter 2

A theory of cortical

self-organisation

This chapter will first review the concepts of cortical maps and cortical self-

organisation. It will then introduce the L-model as a theory of cortical self-

organisation and it will set the basis to study the distributed representations

produced as its patterns of activity and how they are affected by plasticity in the

lateral interactions of the model.

2.1 Cortical maps

A large number of cortical areas, especially primary sensory areas, have been

found to be characterised by smooth spatial patterns of tuning properties across

the cortical sheet, termed ‘cortical maps’ (Wilson and Bednar, 2015; Bednar and

Wilson, 2015). Figure 2.1 shows a small collection of example cortical maps in

cats, primates and rodents. The maps are visualized by labelling the cortical

minicolumns in a cortical area with their preferred stimulus, along a specific

feature dimension. Cortical maps can be topographic, mapping the structure of

sensory surfaces like the retina or skin onto the bidimensional cortical surface,

or topological, mapping a complex feature manifold.
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FIGURE 2.1: Cortical maps in mammals. (A) retinotopic organisation of the primary visual
cortex (V1) of macaque monkeys (adapted from (Connolly and Van Essen, 1984)); (B) whisker
barrel cortex (S1) in rodents (from (Wilson et al., 2000)); C orientation selectivity and (D)
ocular dominance in the monkey striate cortex (adapted from (Blasdel, 1992; Miikkulainen et
al., 2006)), and E selectivity to tones of different frequencies in the cat auditory cortex (from
(Imaizumi et al., 2004)). Cortical maps are visualized by labelling the columns in a cortical

area with their preferred stimulus, along a specific feature dimensions.
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Cortical maps have been measured in a variety of cortical areas. The organ-

isation of the somatosensory cortex is known to be somatotopic, with neigh-

boring columns mapping nearby areas on the skin and overall representing the

whole body as “homunculus” (Penfield and Boldrey, 1937; Woolsey et al., 1951).

The primary somatosensory cortex of rodents is further characterised by an or-

dered map of the individual whiskers of the animal, the whisker barrel cortex

(Wilson et al., 2000). Visual areas are perhaps the most intensively studied ex-

amples of cortical maps. Early visual areas are characterised by a retinotopic

organisation that maps points close together on the retina to selective activation

in neighboring cortical columns (Tootell et al., 1982; Connolly and Van Essen,

1984; Blasdel, Salama, et al., 1986). The primary visual cortex represents all the

possible orientations of lines at every position in the retina in a locally smooth

arrangement (Hubel and Wiesel, 1974; Bosking et al., 1997; Blasdel, 1992) in-

terrupted by discontinuous points, pinwheels, around which the full range of

orientations is represented, due to topological constrains (Schwartz and Ro-

jer, 1994). The primary visual cortex also retains a locally smooth map of oc-

ular dominance (Blasdel, 1992), colour tuning (Dow, 2002), spatial frequency

(Nauhaus et al., 2012) and motion direction (Ohki et al., 2005).

A smooth organisation of the tuning properties of neurons is also present in

the primary auditory cortex as a tonotopic map (Imaizumi et al., 2004) and in the

inferotemporal cortex of primates as a smooth variation in selectivity to complex

objects and features (Tsunoda et al., 2001; Tanaka, 2003). The functional organ-

isation of the primate motor and pre-motor areas have also been described in

terms of a locally continuous mapping of the behavioural repertoire of the ani-

mal and of target muscle groups controlled by the individual neurons (Graziano

and Aflalo, 2007; Graziano, 2008).

While cortical maps have been measured in a large variety of different species
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and cortical regions, it is still debated whether map patterns reflect particu-

lar functional organisation, or whether they are just a by-product of other phe-

nomena, like achieving minimal length of connectivity in a cortical area (e.g.,

Koulakov and Chklovskii, 2001).

2.2 Models of cortical self-organisation

Self-organising systems are characterised by the spontaneous emergence of or-

der from an initially disordered system. Self-organisation is considered an emer-

gent property of a system as large-scale ordered patterns can develop by simple,

local, recurrent interactions between composing parts.

A classical example of self-organising systems are reaction-diffusion pro-

cesses (Turing, 1952), that have been shown to produce complex patterns by

local interactions between the components of the system. Reaction-diffusion

processes have been used to model the development of cortical maps in the pri-

mary visual cortex (Wolf, 2005) and in the primary somatosensory cortex (Er-

mentrout, Simons, and Land, 2009). A detailed overview is presented in Wilson

and Bednar (2015).

In general, self-organisation has been suggested as a theory for the formation

of the broad patterns characterising cortical maps, such that they have been sug-

gested to develop from a process that maps high-dimensional vectors onto the

bidimensional cortical surface while trying to preserve local continuity (Schwartz

and Rojer, 1994). Such theory has been developed extensively by means of

computational modeling. A popular branch of models relies on “input-driven”

self-organisation, for which cortical maps arise by passive exposure to a set of

sensory stimuli. The earliest model was presented by Von der Malsburg in 1973

(Malsburg, 1973) (shown in Figure 2.2), and comprises a sheet of input units
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that are connected to a sheet of cortical units, separated into excitatory and in-

hibitory populations. The input units are connected to the cortical units by af-

ferent weighted connections, and the cortical units are connected to each other

by lateral weighted connections that are excitatory over short distances and in-

hibitory over larger distances. The inputs elicit an initial response in each corti-

cal unit, computed as a weighted sum of its inputs via the afferent connections,

which is squashed using a non-linear (e.g., sigmoidal) output function. The ini-

tial cortical activation then propagates through the lateral connections, and the

net effect of the short-range excitation and long-range inhibition is a dynamic

that clusters an initial distributed cortical activation into a pattern of localised

‘activity blobs’. Hebbian plasticity in the afferent connections consolidates these

dynamics by increasing the strength of the connections of units that are consis-

tently co-active, such that a similar pattern of input will cause a similar pattern

of blobs to emerge in the future. The afferent weights for each cortical unit are

normalized by dividing them by the sum of the afferent weights. If the net-

work is presented with many patterns from a set with some underlying statisti-

cal structure then the consolidation of the recurrent dynamics through Hebbian

plasticity gives rise to a topological map pattern, such that adjacent units de-

velop similar receptive fields (i.e., similar patterns of afferent connectivity) and

thus respond selectively to similar patterns. For example, inputs describing a

range of image orientations yield orientation preference maps resembling those

measured in primate V1.

Another example of cortical maps development due to optimization of lo-

cal continuity was given by Obermayer (Obermayer, Ritter, and Schulten, 1990;

Obermayer, Blasdel, and Schulten, 1992), who used a variant of the Kohonen

Self-Organizing Map (SOM) (Kohonen, 1982) to show that a continuous map-

ping of retinal positions and orientations of lines on two dimensions could pro-

duce patterns of receptive field preferences similar to those observed in the

mammalian primary visual cortex.
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FIGURE 2.2: Von der Malsburg 1973 model. (A) Profile of the strength of lateral connec-
tivity in the Von der Malsburg 1973 model of cortical self-organisation. (B) Spatial layout
of the input (retina) and model (V1) units with an example activation due to an oriented
line. (C) learnt orientation preference map featuring locally continuous change in preferred
tuning and pinwheel points. Reproduced, with permission, from (Bednar and Wilson, 2015;

Malsburg, 1973).
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2.3 The L-model

The L-model (LISSOM, Laterally Interconnected Synergetically Self-Organizing

Map) (Miikkulainen et al., 2006; Stevens et al., 2013; Wilson et al., 2010; Spigler,

2014; Fischer, 2014), which can be considered an extension of the first model of

map self-organisation proposed by von der Malsburg (Malsburg, 1973), relies on

Hebbian plasticity and short-range excitatory and long-range inhibitory recur-

rent interactions intrinsic to the cortical area to explain the emergence of cortical

maps (Bednar and Miikkulainen, 2000; Wilson et al., 2010; Spigler, 2014; Fischer,

2014). The units in the model are arranged as a bidimensional lattice and, for

computational efficiency, they are defined to be a micro-column rather than a

neuron, which allows simulation of a single population of cortical units that are

each able to excite or inhibit one another to support map self-organisation. The

activation ηj(t) of cortical unit j at time t is given by,

ηj(t) = σ

(
αA
∑
a

Ajaxa + αE
∑
e

Ejeηe(t− δt)− αI
∑
i

Ijiηi(t− δt)

)
(2.1)

where A is its set of afferent connection weights, E is its set of excitatory

weights, I is its set of inhibitory weights, and values ofα are interaction strengths

of each connection, afferent, lateral excitatory and lateral inhibitory. σ is a

piecewise-linear output function. xja is the input to unit j from the afferent

input unit a (within the afferent receptive field of unit j).

The L-model is sometimes used in conjunction with homeostatic adapta-

tion mechanisms (Adaptive L-model, AL) to distribute activity evenly across

the network. This mechanism is implemented as a dynamic threshold (θ) of the

piecewise-linear output function σ

σ(x) = max(0, x− θ)
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At the end of each iteration, the dynamic threshold is updated as

θ(t) = θ(t− 1) + λ(ηj(t)− µ)

where λ is the homeostatic learning rate, and µ is the target average activity.

ηj(t) is a smoothed exponential average of the settled activity of each model

unit

ηj(t) = (1− β)ηj(t) + βηj(t− 1)

with β being a smoothing parameter.

The L-model then extends the 1973 model of von der Malsburg by allowing

the recurrent weights between cortical units to change according to the same

Hebbian rule as for the afferent weights,

wjk(t) =
wjk(t− 1) + εpηjηk∑
pwjp(t− 1) + εpηjηp

(2.2)

where wjk may be the weight of an afferent connection (i.e., by setting wjk =

Ajk and ηk = xk), an excitatory connection (i.e., wjk = Ejk), or an inhibitory

connection (i.e., wjk = Ijk), ε is the learning rate, and p is an index over the units

for which there are corresponding weights in the set A, E, or I . The schematics

of the L-model are shown in Fig. 2.3, together with an example of how the

equations of the L-model lead to the emergence of complex patterns of activity.

An iteration of the L-model algorithm occurs at integer timesteps (t = 1, t = 2

etc.), and each iteration involves defining an input pattern, applying Equation

2.1 to all cortical units τ times to allow the dynamics to settle (δt = 1/τ ), ap-

plying Equation 2.2 to modify the weights, and then resetting all activity in the

network to zero before the next iteration.

It is important to emphasize that the L-model does not assume that long-

range inhibitory interactions are implemented via long-range inhibitory connec-

tions in the cortex. Long-range inhibitory interactions may be implemented via



2.3. The L-model 17

FIGURE 2.3: Schematics of the L-model. A. Schematics of the L-model. Model units are
arranged as a bi-dimensional lattice, and are connected via short-range excitatory and long-
range inhibitory connections. B. Orientation map simulated using the L-model with a his-
togram of the orientation preferences of the model units. Compare with Figure 2.1C. Adapted
from (Miikkulainen et al., 2006). C. Example of how the equations of the L-model lead to the
emergence of complex patterns of activity in a model of the barrel cortex, adapted from Figure

2 of (Wilson et al., 2010).
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long-range excitation of local inhibitory neurons, as is thought to be the case in

e.g., V1 for high-contrast visual inputs (Hirsch and Gilbert, 1991; Weliky et al.,

1995) (also see refs. (Ren et al., 2007; Martin, 2002; Somers et al., 1998; Silberberg

and Markram, 2007)), and in S1 for strong tactile inputs (Helmstaedter, Sak-

mann, and Feldmeyer, 2009; Moore, Nelson, and Sur, 1999). The architecture of

the L-model is deliberately simplified and does not reflect the detailed anatomy

of cortical connectivity. Related models with more complex architectures have

demonstrated how the more elaborate circuitry in animal cortices could yield

similar results (Law, 2009; Bednar, 2012), but these require many more param-

eters and more complicated analysis methods. Whether long-range inhibition

is implemented by monosynaptic or disynaptic connections is not important for

the present modelling results, only that interactions be net inhibitory at long dis-

tances. See Wilson et al. (2010) and Stevens et al. (2013) for further discussion.

Further elaborations of the algorithm to include biologically plausible mech-

anisms of homeostatic adaptation (e.g., a dynamic threshold in the output func-

tion σ) yield maps that match all available data on the patterning, stability, and

robustness of (non-rodent) mammalian maps (Stevens et al., 2013). The ability

of Hebbian-modifiable lateral inhibition to explain these data motivates the L-

model as a strong theory of cortical self-organisation (Bednar and Wilson, 2015;

Wilson and Bednar, 2015).

2.4 Distributed cortical representations in the L-model

A crucial question in neuroscience is how activity in the neocortex encodes the

representation of perceptual stimuli (Pennartz, 2015). Evidence exists in sup-

port of both distributed representations, that make use of widespread patterns of

activations to represent objects by the joint activity of a group of units respon-

sive to a large number of stimuli, and sparse ones, that are instead characterised

by a small average number of active units (Connor, 2005; Quiroga et al., 2008;
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Quiroga, Fried, and Koch, 2013). Figure 2.4 shows an example of representations

with different degrees of sparsity. In the extreme case in which complete features

or stimuli are represented by individual units or by a small cluster of units, the

representation is referred to as localist. It is important to observe that distributed

coding makes it possible for different objects to produce overlapping cortical

representations, where a shared subset of neurons responds to both, while neu-

rons in localist codes are generally selective to more specific objects (Page, 2000).

Distributed representations can subserve population coding, in which a per-

ceptual variable (e.g., orientation of a line or colour of a patch) or the identity

of an object may be recovered from the responses in a population of neurons as

a linear combination of the features to which those neurons typically respond,

weighted by their activation. For example, population activity in cat motor cor-

tex has been found to represent the 3D location of the paw as a vector sum of

the paw locations preferred by the individual active neurons (Ethier et al., 2006).

A similar type of distributed representation has been found to encode complex

shapes in primate visual area V4 (Pasupathy and Connor, 2002), and to encode

objects as a combination of simpler features and smaller parts in primate tem-

poral cortex (Wachsmuth, Oram, and Perrett, 1994; Tsunoda et al., 2001). In

general, areas representing complex objects like faces might use a population

representation, constructed as the joint activity of neurons selective to similar

objects or their parts (e.g., in representations of faces, neurons that are selective

to specific eyes, mouths etc.).

The L-model in particular can support both distributed and sparse represen-

tations, to different degrees depending on the strength of the inhibitory connec-

tions between the model units. Indeed, activity in the model settles to an equi-

librium that depends on the balance between afferent and excitatory input and

lateral inhibition. Previous studies have exploited the model’s intrinsic popula-

tion coding to read out perceptual information such as the perceived orientation
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FIGURE 2.4: Distributed vs sparse representations. Comparison of an example (a) dis-
tributed versus (b) sparse representation coded by the firing rate of neurons in a square patch
of cortex (the color of each pixel represents the activity of a neuron). Adapted from (Connor,

2005).
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of gratings (e.g., as measured in terms of the tilt-aftereffect Bednar and Miikku-

lainen, 2000) and perceived colour (e.g., as measured in terms of the McCollough

Effect, for example in Figure 2.7 adapted from Spigler, 2014).

The L-model can also produce an approximate parts-based population code

as in primate visual area V4 (Pasupathy and Connor, 2002) and inferotemporal

cortex (Wachsmuth, Oram, and Perrett, 1994; Tsunoda et al., 2001). Figure 2.5

shows an example of the encoding of the cortical representation of a whole object

composed by two independent parts (part 1 and part 2). The figure compares an

example of data recorded by Tsunoda (Tsunoda et al., 2001) showing distributed

and overlapping, parts-based cortical representations (Fig. 2.5A) in the monkey

inferotemporal cortex with a similar result from a simulation using the L-model

(Fig. 2.5B). In particular, subsets of the cortical units involved in the represen-

tation of complex ‘whole’ objects are selective to the component features. It is

interesting to observe that the representations produced by the L-model, like the

original data from Tsunoda, can be overlapping. In the specific example shown,

the overlap is between the whole object and its composing parts, but the same

result is present for two different ‘whole’ objects that share a part.

2.5 How does plasticity in lateral interactions influence

cortical dynamics?

A useful way to understand the influence of synaptic plasticity in the lateral

interactions on cortical dynamics is to look at how different theories of cortical

function based on either fixed or plastic connectivity are capable of explaining

experimental data.

The first theory is a model of cortical map self-organisation proposed by Von

der Malsburg in 1974 (Malsburg, 1973), which was reviewed in depth in Section

2.2. The main feature of the model is that each unit, arranged in a bidimensional

sheet that approximates a patch of neocortex, is connected with its neighboring
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FIGURE 2.5: Distributed representation of objects. A. Optical imaging of the infero-
temporal cortex (IT) of a macaque showing patches of neurons selective to parts of an object.
The cortical representation of the whole object significantly overlaps with that of its parts.
Adapted from Fig. 3b of (Tsunoda et al., 2001). B. Similar cortical organisation emerges in the
L-model of (Stevens et al., 2013) in a simulation of 48 by 48 cortical units. The model units
that are active by the object above a threshold of 0.3 are surrounded by a black line, and those
which are active by presentation of either of its constituent parts are coloured blue or green.
The threshold for visualization was chosen to reveal how the representations learnt by the
model are distributed across the network. Note that a high threshold masks some units that
participate in a given representation, whereas a low threshold exaggerates the contribution of
units with poor stimulus tuning. Note that even though the L-model is here applied to high-
level inferotemporal areas, it was originally designed as a model of early sensory cortices.
The use of the L-model in this context is justified by similarities in the cortical circuits of the
different areas, particularly in the presence of intra-area plastic lateral interactions and from
experimental evidence that shows that higher cortical areas also feature a topographical map

organization (e.g., Tanaka, (2003)). The figure is adapted from (Spigler and Wilson, 2017).
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units by means of fixed lateral connections whose strength follows a “Mexican

hat” profile, with short-range connections being excitatory and long-range ones

being inhibitory. The model was successful in showing that such a fixed profile

of lateral connectivity is sufficient to produce tuning preferences distributed in

broad spatial patterns similar to those observed in cortical maps (reviewed in

the next Section, 2.1).

Indiscriminate connectivity between neurons with different tuning is, how-

ever, in contrast with experimental evidence that suggests specific connectivity

usually arranged in patches and linking neurons with similar tuning preferences

(e.g., in the visual cortex (Gilbert and Wiesel, 1989; Weliky et al., 1995; Bosking

et al., 1997); see Figure 2.6). The ring model of orientation tuning in the vi-

sual cortex (Ben-Yishai, Bar-Or, and Sompolinsky, 1995) addressed this problem

by adopting a similar mexican hat profile of lateral connectivity, that was not

however based on the bidimensional space of the cortex but rather in feature

space, along the dimension of input line orientation. This different pattern of

connectivity was found to be sufficient to produce contrast enhancement result-

ing, under appropriate parameters, in narrow tuning curves of the model units

even in the case in which the afferent connectivity yielded low selectivity.

Intuitively, Von der Malsburg’s model and the ring model can be integrated

by allowing the lateral interactions to be modified by Hebbian plasticity, as

this would allow learning connection strengths that depend on the similarity

between the tuning preferences of pairs of model units. An example of this

approach is the L-model (Stevens et al., 2013), that like Von der Malsburg’s

model simulates a patch of cortical surface as a bidimensional lattice of laterally-

connected units. While plasticity in the lateral interactions can improve the

model by letting it learn tuning-specific connectivity, thus removing the limi-

tation due to fixed homogeneous connectivity in Von der Malsburg’s model, it

can also yield further advantages over the ring model where the connectivity is

specific. In particular, it has been hypothesised that plastic lateral interactions
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FIGURE 2.6: Specific lateral connectivity in the primary visual cortex. Distribution of
synaptic boutons (labelled in black) for two cortical minicolumns (injection sites marked in
white) in the primary visual cortex of a tree shrew. Near the target neurons, the connectivity
is uniform and generic. At longer distances, however, the connectivity is found to be specific
and restricted to afferent neurons with similar tuning preferences. The figure is from (Bosking

et al., 1997).
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can be advantageous to dynamically encode non-stationary changes in the dis-

tribution of the input statistics and use this information to decorrelate the tuning

preferences of cortical units (Bernacchia and Wang, 2013; Bednar and Miikku-

lainen, 2000; King, Zylberberg, and DeWeese, 2013; Sippy and Yuste, 2013).

To understand how plasticity in lateral interactions affects cortical dynamics,

the approach in this thesis is to examine short-term and medium-term cortical

dynamics through the lens of the L-model, which has been calibrated through a

number of studies to the development of cortical maps as emergent properties

of cortical dynamics based on lateral interactions.

2.6 Plasticity in lateral interactions affects cortical repre-

sentation

The effect of plasticity and adaptation in cortical lateral interactions on cortical

representation has been indirectly observed in previous studies. In particular,

it has been shown that plasticity and adaptation can explain the perceptual il-

lusions of tilt aftereffect (Bednar and Miikkulainen, 2000) and the McCollough

effect (Spigler, 2014).

The McCollough effect is a type of visual effect for which black and white

gratings are made to perceptually appear colored via adaptation to an adapter

grating of opposite color presented for a fixed time. The effect is contingent

on the orientation of the adapter, with colorless test gratings at different orien-

tations appearing more colored at orientations similar to the one of the adapter,

and with the effect ultimately disappearing at orientations farther than 90◦ apart.

The experimental setup thus introduces an artificial correlation between a spe-

cific orientation and color. In a previous study, I investigated how this correla-

tion can produce plastic changes in the lateral interactions in the early primate

visual areas using the L-model (Spigler, 2014), and I showed how the model

could fit a wealth of psychophysical data. Specifically, the model explains the
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McCollough effect by a Hebbian-like increase in the strength of the inhibition

between neurons selective to the orientation and color of the adapters such that

the neurons activated by a colorless test grating of similar orientation would in-

hibit the corresponding hue-sensitive neurons and thus produce a population-

decoded perception of the opposite hue (under the assumption that a white grat-

ing would produce a baseline level of activity in neurons selective to all hues

equally, such that a reduction in the activity of a specific subset of them would

produce a pattern of unbalanced activity similar to that produced by a grating

of opposite hue).

These examples provide a first intuition as per how plasticity in cortical lat-

eral interactions may better fit available experimental data and explain the ob-

served neural dynamics. These results are also particularly interesting as both

the tilt aftereffect and the McCollough effect require relatively short adaptation

times to work (on the order of minutes), but whose effect can persist for far

longer times (up to days / months for the McCollough Effect (Jones and Hold-

ing, 1975)). Another interesting aspect of these studies is that they showed that a

low-level mechanism of cortical dynamics such as plastic changes in lateral con-

nectivity can affect the high-level perception of sensory stimuli, thus suggest-

ing an initial bridge between models of cortical self-organisation and cognitive

function. In particular, they relied on a population-based decoding of the dis-

tributed representations generated by the activity of the model units to predict

the perceptual judgements made by the model. These studies also suggested

that important information about the cortical representation of sensory stimuli

may be encoded within the synapses of lateral connections.

However, while the previous studies did use the learnt synaptic connectivity

to decode the activity of the network, in order to estimate perceptual judgements

from the model, they did not explore the implications of these findings. Figure

2.7 shows the perceptual judgements decoded from the model in the two exper-

iments, compared to similar judgements made by human participants.
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FIGURE 2.7: Tilt Aftereffect and McCollough Effect. A. Tilt aftereffect in human partici-
pants (dashed line) and in the L-model (solid line) (from (Bednar and Miikkulainen, 2000)).
B. McCollough effect in human participants (top, only test angles in [−45◦, 45◦] shown) and
in the L-model (bottom, full range of test angles). The top panel is from (Ellis, 1977), the

bottom from (Spigler, 2014).
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In the next chapter we will investigate how the encoding of cortical repre-

sentations in the synaptic weights of lateral interactions may lead to interference

between distributed representations that share a large subset of neurons in the

same cortical areas, and in particular how plastic and adaptative changes due to

the presentation of one such stimulus may affect the perception of subsequent

stimuli. Chapter 4 will further explore the high-level implications of this inter-

ference through a behavioural experiment.
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Chapter 3

Inhibitory sharpening:

simulations

The majority of this chapter has been adapted from (Spigler and Wilson, 2017).

3.1 Introduction

The more often we encounter an object, for example the more often we see a par-

ticular face or hear a particular voice, the more familiar it becomes. The first time

we see a new face or hear a new voice, it evokes a distributed pattern of activity

amongst neurons that otherwise participate in representing faces or voices with

which we are already familiar. However, responses to familiar objects are usu-

ally more localized, to different degrees of sparsity and selectivity (Connor, 2005;

Quiroga et al., 2008; Quiroga, Fried, and Koch, 2013). This chapter investigates

how patterns of neural activity change as a novel object becomes familiar.

A distributed representation may be recovered from the responses in a pop-

ulation of neurons, as a linear combination of the features to which those neu-

rons typically respond, weighted by their activities. For example, population

activity in cat motor cortex has been found to represent the 3D location of the

paw as a vector sum of the paw locations preferred by the individual active

neurons (Ethier et al., 2006). A similar type of distributed representation has

been found to encode complex shapes in primate visual area V4 (Pasupathy and
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Connor, 2002), and to encode objects as a combination of simpler features and

smaller parts in primate temporal cortex (Tsunoda et al., 2001). In general, areas

representing complex objects like faces might use a population representation,

constructed as the joint activity of neurons selective to similar objects or their

parts (e.g., in representations of faces, neurons that are selective to specific eyes,

mouths etc.).

If a novel object first evokes a distributed pattern of cortical activity amongst

many neurons, then familiarization may correspond to a transition from an ini-

tial distributed representation to a more localist representation that involves the

activity of a smaller subset of the original population.

This intuitive account of familiarization is indirectly supported by observa-

tions of repetition suppression, whereby repeated presentations of a stimulus re-

duce subsequent cortical responses to that stimulus (Kelly and Garavan, 2005).

Repetition suppression has been demonstrated using fMRI, EEG, and single-

neuron recordings, in humans and many other mammals (Li, Miller, and Des-

imone, 1993; Brown and Xiang, 1998; Henson and Rugg, 2003; Larsson and

Smith, 2012; Henson, 2015), and it can be modulated by short-term neural habit-

uation (Epstein, Parker, and Feiler, 2008), synchrony (Gotts, Chow, and Martin,

2012), expectation (Larsson and Smith, 2012), and attention and task-dependency

(Henson et al., 2002; Henson, 2015). The opposite effect, repetition enhancement,

can also be measured, especially at the level of single neurons, with suppression

following shortly afterwards (Müller et al., 2012).

A plausible account of repetition suppression is offered by the sharpening

theory (Desimone, 1996; Wiggs and Martin, 1998; Poldrack, 2000; Grill-Spector,

Henson, and Martin, 2006), according to which a reduction in cortical activity

reflects a narrowing of neuronal tuning curves and a silencing of the responses

of the neurons least tuned to the stimulus. The assumptions of sharpening the-

ory have been made explicit in a computational model (Norman and O’Reilly,
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2003), in which synaptic weights in the afferent projections into a cortical net-

work are modified by Hebbian learning, while neurons compete laterally to

represent a given input pattern under a simple winner-take-all (k-WTA) oper-

ation, for which only the k most active units are allowed to remain active, while

all the others are inactivated. The architecture of this model is consistent with a

broad range of ‘self-organising network’ models that use similar local compet-

itive learning mechanisms to explain the emergence of continuous topological

map patterns resembling those measured in primary cortical areas (Malsburg,

1973; Dayan, 1993; Carreira-Perpinán and Goodhill, 2004; Wilson and Bednar,

2015).

Because strong lateral competition is a major component of Norman and

O’Reilly’s model, here we set to explore its role in a more biologically plausi-

ble manner, by using a model with explicit Hebbian-modifiable lateral inter-

actions (Stevens et al., 2013) to investigate repetition suppression. The model

accounts for the reduction in evoked cortical activity as a strengthening of lat-

eral inhibitory interactions. Essentially, the more often a stimulus is presented

the stronger the lateral inhibitory interactions between the responding neurons

become, leading to an increase in the selectivity and a reduction in the spatial ex-

tent and magnitude of the response. The assumptions of this model are broadly

consistent with those of sharpening theory, but the simulations presented herein

suggest that plasticity in cortical afferents plays only a secondary role. Indeed,

lateral plasticity alone is sufficient to account for repetition suppression. We see

how this account can be falsified, by deriving a non-intuitive prediction from the

model; repetition suppression for an ‘adapter’ object can be disrupted by inter-

vening exposure to objects that produce activity that overlaps with that elicited

by the adapter (i.e., by objects that have parts in common with the adapter).

A key prediction of the model is therefore that overlapping cortical represen-

tations interfere with one another. The prediction of interference offered by this

account could be useful in interpreting data collected previously in a variety of
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contexts, such as visual masking (Keysers and Perrett, 2002), and adaptive for-

getting (Wimber et al., 2015), as well as in the context of interference between ob-

jects of different semantic categories (Cohen et al., 2014). Moreover, it is shown

how this modelling prediction helps discriminate between theories of repetition

suppression based on Hebbian plasticity and alternative theories, for example

based on neural fatigue.

3.2 Methods

Repetition suppression has mostly been recorded in ‘higher’ cortical areas (Schac-

ter and Buckner, 1998), which are characterized by large receptive fields and

whose afferent input presumably represents stimuli with a degree of invariance

to the lower level features represented in primary cortical areas. Our approach

is to investigate repetition suppression in higher cortical areas by training the

L-model (Stevens et al., 2013) with afferent input patterns that represent the

minimal set of assumptions about the underlying network architecture that are

required to reveal the effect. Therefore inputs to the L-model are derived from

nine ‘input units’, with the activation of each corresponding to the presence of

a particular stimulus feature such as a mouth or an eye. Each cortical unit has

nine afferent weights A corresponding to the nine input units xi ∈ [0, 1].

In a period of pre-training, 10, 000 input patterns, each a vector with a ran-

domly selected component set to 1 and the remaining eight set to values sam-

pled uniform randomly in the range 0 to 0.3, were presented to the network to

initialize the cortical sheet with a smooth map-like representation of the (nine-

dimensional) input space. Note that pre-training was performed using individ-

ual ‘parts’ only, contrary to the main simulations presented here that used input

stimuli composed by multiple parts. This was done to produce a parts-based

population code similar to that suggested to be present in the monkey inferotem-

poral cortex (Tsunoda et al., 2001). Homeostatic plasticity was enabled during
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this pre-training period to aid the development of continuous maps. However,

as homeostatic plasticity is not a component of our account of repetition sup-

pression it was then disabled for the simulations reported herein.

A sheet of 48 by 48 cortical units was simulated. Interaction strengths were

set to αA = 2.2 (afferent), αE = 1.2 (lateral excitatory), and αI = −2.3 (lat-

eral inhibitory) respectively, and the cortical dynamics were allowed to settle

for τ = 16 settling steps. Learning rates were εA = 0.1, εE = 0, and εI = 0.3.

All the parameters used are the same as (Stevens et al., 2013) with the exception

of the interaction strengths, which were modified to increase the amount of ef-

fective inhibition. The simulations were found to be relatively robust to param-

eters changes. Note that maps generated by the model are indistinguishable re-

gardless of whether or not plasticity is enabled in lateral excitatory connections

(data not shown), hence plasticity in lateral excitatory connections was disabled

(εE = 0) to allow for a clear interpretation of the results in terms of plastic lat-

eral inhibition (see (Miikkulainen et al., 2006; Stevens et al., 2013)). The full set

of model parameters is reported in Appendix A. The model was implemented

using the Topographica neural map simulator (Bednar, 2009).

3.3 Results

A set of simulations was run using the ‘L-model’ (Stevens et al., 2013) to in-

vestigate how repetition suppression might emerge from intracortical plasticity,

according to which both afferent and lateral cortical connectivity is modifiable

by Hebbian learning.

3.3.1 Plastic intracortical connectivity is sufficient to explain repeti-

tion suppression

The first simulation involved presenting the same ‘adapter’ pattern to the net-

work for 100 simulated model iterations, while recording the sum of the activity
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over all cortical units after the settling of the recurrent dynamics. The adapter

was the pattern x = {1, 1, 0, 0, 0, 0, 0, 0, 0}, which represents a simple ‘object’ as

the configuration of two ‘parts’ (part x1 and part x2). The network clearly shows

repetition suppression, i.e., a reduction in total cortical activity due to repeated

presentation of the stimulus. Inspection of the pattern of activity generated by

the network reveals why. Fig. 3.1 presents a comparison of the simulated corti-

cal representation of the adapter stimulus before (blue) and after (red) repetition

suppression, in which it is clear that the representation shrinks and ‘sharpens’

over time.

To investigate the relative contribution of afferent versus lateral plasticity to

repetition suppression, the network was simulated in three cases. In the first

case plasticity was enabled in both the afferent and inhibitory connections (af-

ferent+inhibitory, i.e., the same procedure as in Fig. 3.1). In the second case

plasticity was enabled only in the inhibitory connections, and the weights of af-

ferent connections were kept fixed from time t = 0 (inhibitory-only). In the third

case plasticity was enabled only in the afferent connections, and the weights of

inhibitory connections were kept fixed from time t = 0 (afferent-only). As shown

in Fig. 3.2, the decrease in the total activation of the model cortex depends heav-

ily on the strengthening of the inhibitory interactions between units active in

the same representation, and it occurs even when afferent plasticity is disabled.

However, even though the case in which inhibitory plasticity is disabled does

not cause a decrease in activity, it still produces sharpening in the representa-

tion of the adapter stimulus (Fig. 3.2B). Herein the model used will have both

afferent and lateral plasticity enabled.

3.3.2 Interfering representations disrupt repetition suppression

Several studies have investigated the effects of interrupting repetition suppres-

sion for an ‘adapter’ object by presenting a number of ‘intervening’ objects, and
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FIGURE 3.1: Simulations showing repetition suppression. A. The L model (Stevens et al.,
2013) shows repetition suppression dynamics when a single input stimulus is presented to
the network. The total activation is computed at each iteration as the sum of the activity of
all units in the network. The plot is an average of 10 simulations ran with different random
initial conditions, with the shaded area representing standard deviation. B. The cortical rep-
resentation of the repeated stimulus is visualized by thresholding the activity of the network
before (blue) and after (red) repetition suppression. Representations produced by the model
are distributed across stable blobs of highly active units. After repetition suppression, the
response is “sharpened” (Desimone, 1996), i.e., the sizes of blobs of super-threshold activity

shrink.
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FIGURE 3.2: Effect of afferent and inhibitory plasticity. A. Comparison of the dynamics of
repetition suppression in the L-model (Stevens et al., 2013) in three cases: plasticity enabled in
both the afferent and inhibitory connections (afferent+inhibitory, i.e., the same as in Fig. 3.1);
plasticity enabled only in the inhibitory connections (inhibitory-only); and plasticity enabled
in the afferent connections, using fixed inhibitory connections (afferent-only). Plasticity in
the inhibitory connections is revealed to be necessary to produce a decrease in the total acti-
vation of the network. We note that the case of afferent-only produces an increase in the total
activation of the model, and that plasticity in the afferent connections alone is not guaranteed
to decrease, as the activation depends on a balance between the magnitude of increase and
decrease in activity of the individual units. We indeed observe both repetition suppression
and enhancement of individual units, producing sharpened representations with repetition, as
in previous work (Norman and O’Reilly, 2003). B-C. Comparison of the representation of the
adapter stimulus in the afferent-only (B) and inhibitory-only (C) cases before and after repeti-
tion, which shows that regardless of the increase or decrease in activation, the representations

do become sharpened and show a decrease in the number of active units.
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then measuring the response to the original adapter presented again. It is in-

teresting that there exists conflicting evidence on the effect of such designs. An

early study of single neurons in primate inferotemporal cortex, for example,

found that repetition suppression was unaffected by the presentation of more

than 150 intervening stimuli between successive presentations of the adapter

pattern (Li et al., (Li, Miller, and Desimone, 1993)). However, more recent fMRI

studies with humans have reported significant differences between responses

before and after interruption (Henson et al., (Henson et al., 2004; Henson, 2015)).

The difference between these findings might be due to a variety of factors, from

differences in the measured signals (single-neuron electrophysiology versus lo-

cal field potential versus functional-MRI) to differences in protocol (stimulus

type, duration, task, previous exposure to the adapters etc.) and species (human

versus non-human primates).

Specifically, the hypothesis here is that intervening stimuli whose cortical

representation overlaps significantly with that of the adapter (i.e., whose active

neurons respond to both objects) may interfere with repetition suppression. Li

et al., used stimuli less likely to produce overlapping cortical activations (line

drawings of objects from various semantic categories), whereas the studies by

Henson et al., used faces, that despite being unique and distinguishable from

one another are processed in very localized regions of the neocortex (i.e., in the

fusiform face area, FFA).

To explore these interactions further, the network was subjected to a three-

phase design. In the first phase of the experiment, the adapter pattern was pre-

sented as input, thus producing repetition suppression dynamics as before. Dur-

ing the second phase, the network was shown a different, intervening stimulus.

In the third phase, the original adapter was presented again. Each phase was

run for 100 simulated steps. In what was called the ‘non-overlap’ condition, the

intervening stimulus presented in phase 2 represented two new ‘parts’ that did

not feature in the adapter stimulus (e.g., x4 = 1 and x5 = 1). In what is called
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the ‘overlap’ condition, the intervening stimulus consisted of one part from the

adapter stimulus and one new part (e.g., x1 = 1 and x3 = 1). The difference be-

tween these two conditions constitutes our hypothesis about the critical differ-

ence between the stimuli used by Li et al., (comparable with our ‘non-overlap’

condition) and Henson et al., (comparable with our ‘overlap’ condition); see

Fig.3.3.

In the non-overlap condition, repetition suppression was not affected by pre-

sentation of the phase 2 stimulus (Fig.3.4A), and the cortical response to the

adapter did not change between the final trial of phase 1 and the first trial of

phase 3 (Fig.3.4B). The network response in the non-overlap condition is there-

fore consistent with the findings of Li et al. (Li, Miller, and Desimone, 1993).

In the overlap condition, however, repetition suppression was strongly affected

by the presentation of the intervening stimulus (Fig. 3.4C), which caused an

increase in the response to the adapter at the beginning of phase 3, reflecting

a re-organization of the representation of the adapter (Fig. 3.4D). A compari-

son presented in Fig. 3.5 reveals no significant difference in the total cortical

response to the adapter before versus after phase 2 in the non-overlap condi-

tion (paired t-test, t(18) = −2.0161, p > 0.05), but a significant difference be-

tween the two responses in the overlap condition (paired t-test, t(18) = −7.944,

p < 0.0001). Statistical tests were performed on data from 10 independent sim-

ulations, pre-trained and run with different random seeds and random initial

conditions.

3.3.3 Role of plasticity in the afferent and inhibitory interactions

The effects of plasticity in the afferent and inhibitory interactions are further

compared in the model by setting the learning rate of either one of the connec-

tion types to zero, and then replicating the three-phase protocol from the pre-

vious section. The comparison is reported in Fig. 3.6. We observe that the two

models exhibit opposite dynamics after the intermediate phase, with a predicted
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FIGURE 3.3: Influence of intervening stimuli on the degree of cortical overlap. A. The effect
of intervening patterns in repetition suppression can be tested with a three phase protocol.
First, an adapter object is presented to the network, in order to produce repetition suppres-
sion. In the second phase, the input is replaced with an intervening pattern (either overlap
or non-overlap). Finally, the original adapter pattern is presented to the network again. Each
phase consists of 100 iterations. The stimuli are nine-dimensional vectors (visualised here as
3 by 3 grids). B. Comparison of the cortical representations of the phase 1 and phase 2 stimuli,
computed at the end of phase 1. At this point the network has learnt an explicit representa-
tion of the adapter (blue). However, no explicit representation of the overlap or non-overlap
stimuli has emerged. The intervening stimuli (phase 2) use some (‘overlap’ object; red) or
none (‘non-overlap’; green) of the components of the adapter. The cortical representation to

the non-overlap pattern has minimal to zero overlap with that of the adapter.
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FIGURE 3.4: Dynamics for the non-overlap versus overlap simulations. A. The level of
activity in the network is not affected by an intermediate phase in which a different (non-
overlap) stimulus is presented. The plot shows the model activity averaged over 10 simula-
tions pre-trained with different random initial conditions. The shaded area is the standard
deviation. B. The cortical representation of the adapter does not change during the interme-
diate phase (iterations 100 to 200) when presented with the non-overlap stimulus. Indeed,
there is no interaction between the representation of the adapter and intervening stimuli. C.
The activity generated by the model is different when the overlap stimulus is used instead
of the non-overlap stimulus. After the intermediate phase, the activity increases rather than
remaining constant (as it does in panel A). D. The representation of the adapter stimulus
changes during the intermediate phase when the overlap stimulus is used. Note that the
total activation computed in panels A and C is the sum of the activity of all units (not the

number of active units shown in the cortical representation; B,D).
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FIGURE 3.5: Non-overlap versus overlap. Comparison of the difference in activity produced
by the adapter stimulus before and after the intermediate phase (iteration 100 versus 200),
in the non-overlap and overlap simulations. The difference due to the overlap stimulus was
statistically significant (paired t-test, t(18) = −7.944, p < 0.0001). Any difference due to
the non-overlap stimulus was not significant (paired t-test, t(18) = −2.0161, p > 0.05). The
tests were performed on data from 10 different simulations, using models pre-trained and

ran with different random seeds.
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increase in activity in the inhibitory-only case, similarly to the results from the

combined model, and a further decrease in the afferent-only simulations. How-

ever, both models show a spreading of the representation of the adapter stimu-

lus after the intermediate phase, as an un-sharpening of its representation. This

is interesting as the afferent-only model shows a similar behavior in the first

phase, producing sharpening (as seen from the changes in the model represen-

tation, see Fig. 4B in the main text), that is not accompanied by a decrease in the

total activity. Indeed, while afferent plasticity continually improves the tuning

of the model units to the adapter, thus increasing their activation, the lack of

lateral inhibitory plasticity means that units that are active when the adapter is

presented, but whose preferred features were not co-occurring before its presen-

tation, have no means to inhibit each other and thus to compensate the increase

in activity. This limitation, however, might not apply to other models based on

fixed inhibition between the units, for example in Norman and O’Reilly (2003),

where inhibition is modelled with a k-WTA operation uniform across all the

units.

3.4 Discussion

The self-organising models of Stevens and colleagues (Stevens et al., 2013) was

developed to model the emergence of topological maps in primate neocortex,

and has been then used to model a variety of cortical dynamics. Notably, while

the L-model was originally used to model long-term developmental processes,

it was later successfully applied to dynamics with shorter timescales, for exam-

ple the Tilt-Aftereffect (Bednar and Miikkulainen, 2000) and the McCollough

Effect (Spigler, 2014). The distinguishing feature of the theory is that both affer-

ent and lateral connectivity is updated using mechanisms of Hebbian plasticity.

As a consequence, intra-cortical interactions strengthen between units that are

co-active. In particular, repeated presentations of the same stimulus produce a
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FIGURE 3.6: Overlap vs Non-Overlap in Inhibitory-Only vs Afferent-Only. Comparable
with Fig. 3.4. The top panels present the Inhibitory-Only case (plasticity enabled only in the
inhibitory lateral connections), while the bottom ones present the Afferent-Only one (plastic-
ity enabled only in the afferent connections). The panels within each case are equivalent to
those in Fig. 3.4. The two boxes at the right show a visualization of the activation patterns of
the adapter, non-overlap and overlap stimuli at the end of the first phase, as in Figure 3.3 (B).
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strengthening of the inhibitory interactions between the units that are recruited

into its cortical representation (i.e., the units activated by the presentation of the

stimulus), and thus a lowering of the overall level of activity. We suggest that

such factors might underlie the phenomenon of repetition suppression.

A previous model has shown that sharpening can arise from plasticity in af-

ferent projections alone, if strong competition between the model units is present

(Norman and O’Reilly, 2003). However, repetition suppression was only mea-

sured in individual units, and the authors explain that the overall activation

in the model is not guaranteed to decrease with repetition, as it depends on a

balance between the magnitudes of suppression and enhancement of individual

units. Further, this model approximated the net effects of recurrent inhibitory in-

teractions in the neocortex using a simple winner-take-all operation, which may

only account for few of the complex interactions that emerge from plasticity in

real biological networks. Contrary to the the work by Norman and colleagues, in

this study the recurrent cortical interactions that mediate local competition were

explicitly simulated, and it was shown that plasticity in the lateral inhibition

between cortical units is sufficient to account for repetition suppression, even

without afferent plasticity (Fig.3.2). Our main simulations include both lateral

and afferent plasticity, hence the present results do not challenge the idea that

afferent plasticity contributes substantially to repetition suppression. Instead,

we claim that repetition suppression reflects a combination of both afferent and

lateral plasticity.

This account is broadly consistent with sharpening theory, according to which

a reduction in the cortical response reflects a narrowing of tuning curves and

therefore an increase in the selectivity of neuronal activity. The current model

extends sharpening theory by emphasising also the role of intra-cortical plas-

ticity. According to this extended ‘inhibitory sharpening’ model, tuning curves

narrow due to the effects of both afferent and lateral plasticity. Essentially, the

co-activation of units recruited in the representation of the adapter stimulus
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causes a strengthening of mutual inhibition between them via Hebbian plas-

ticity, and as this mutual inhibition builds over time the responses of individual

units become more selective, the overall cortical response decreases, and the

least selective neurons are silenced.

Alternatives to the sharpening theory are theories based on neural fatigue,

according to which repetition suppression reflects a depletion in the resources

required by neurons in order to spike (Li, Miller, and Desimone, 1993; Grill-

Spector, Henson, and Martin, 2006). Neural fatigue theories seem to be sup-

ported by single-unit studies showing that the greatest reduction in cortical ac-

tivity is attributable to the neurons that respond most strongly to the first presen-

tation of an adapter stimulus. However, the inhibitory sharpening account pro-

vides an alternative explanation. By Hebbian association, the units that happen

to be most active upon first presentation of the adapter stimulus subsequently

develop the strongest mutual inhibition.

A further note is that the dependency of the inhibitory sharpening theory

on plastic lateral connectivity makes its dynamics consistent with the predic-

tive coding framework, which also offers an alternative interpretation of repe-

tition suppression compared with theories based on neural fatigue and sharp-

ening (Rao and Ballard, 1999; Huang and Rao, 2011; Friston, 2005). According

to predictive coding, each cortical area predicts the incoming sensory signal,

and makes the unpredicted portion of the signal (the prediction error) available

to subsequent processing areas. Repeated presentation of a stimulus leads to

synaptic changes that improve the ability to predict future stimuli, reducing the

prediction error and thus reducing levels of cortical activation (Grotheer and

Kovács, 2016; Auksztulewicz and Friston, 2016).

Interestingly, when a neural mass model of cortical dynamics was inverted to

fit empirical data, the assumption of an intrinsic (intra-area) and extrinsic (inter-

area) cortical connectivity which reduced exponentially with stimulus presenta-

tions could explain most of the suppression (though an additional phasic term
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helped increase the fit) (Garrido et al., 2009). The authors interpreted the changes

in intrinsic and extrinsic cortical circuitry in terms of the perceptual and plastic

components of the computations required for predictive coding. Specifically,

they reported a consistent decrease in coupling in the intrinsic connectivity fol-

lowing the first stimulus presentation, which is broadly consistent with the Heb-

bian buildup of recurrent lateral inhibition predicted by the present model. An

extension of the present model to include extrinsic interactions between cortical

areas, guided by the predictive coding framework, may allow for a mechanis-

tic account of the contribution of plastic recurrent cortical interactions to hier-

archical cortical computation. Moreover, as the cortical interactions simulated

in the present model are known to subserve topological map formation, this

approach could provide a theoretical bridge between predictive coding (acting

on psychophysical timescales) and map development (acting on developmental

timescales).

Other avenues for future research include establishing the relationship be-

tween inhibitory sharpening and other known accounts of repetition suppres-

sion framed in terms of increased speed of processing (James and Gauthier, 2006)

and enhanced neural synchronization (Gotts, Chow, and Martin, 2012).

An interesting of our model, and hence of the extended ‘inhibitory sharpen-

ing’ theory that it represents, is demonstrated in Figs. 3.4 and 3.5. Experimental

confirmation of the prediction that repetition suppression may be modulated

and disrupted by stimuli with a cortical representation that overlaps that of the

adapter (e.g., comprising a subset of the features of the adapter stimulus), would

constitute preliminary evidence in support of the inhibitory sharpening theory.

In contrast, in the same protocol neural fatigue would likely predict a further de-

crease in cortical activity, as the shared units would undergo further repetition

suppression independently in each of the three phases. Sharpening would also

predict a further suppression of the activity due to the overlap stimulus, but the

decrease could be minimal or absent depending on the narrowing of the tuning
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of the neurons selective to the adapter stimulus after its first repetition. Still,

even a positive verification of the proposed predictions would require further

supplementary investigation to determine whether the effect was due to lateral

inhibitory plasticity, as in the inhibitory sharpening model, or whether other

dynamics could explain the same data. For example, predictive coding might

exhibit more complex dynamics, such that the presentation of the overlap stim-

ulus could introduce a new statistical co-occurrence between the parts/features

shared by the adapter and the overlap stimuli, and the novel parts of the overlap

stimulus. Such co-occurrence would not be observed on the second repetition

of the adapter, in the third phase of the protocol, which would result in an in-

creased error due to the un-predicted mismatch and thus an increase in activity

similar to that from inhibitory sharpening. This is however not too surprising, as

plastic recurrent lateral connections can learn the statistical co-occurrence of fea-

tures (Bednar, 2012; Bednar and Miikkulainen, 2000; Miikkulainen et al., 2006).

Different types of dynamics may still however exhibit similar dynamics even

without requiring lateral interactions, for example if higher cortical areas were

to feed back novelty detection signals.

To understand why the L-model predicts an increase in activation after the

intermediate phase, it is useful to look at the changes in the representations

of the stimuli before and after each of the three phases (Fig. 3.7). During the

first phase of repetition suppression, the co-activation of units recruited in the

representation of the adapter stimulus led to a strengthening of their mutual

inhibition by Hebbian plasticity, and thus to a suppression of responses in a

subset of units (Fig. 3.1B). However, presentation of a second stimulus shar-

ing features of the adapter increased the inhibition between units selective only

to the second stimulus and units responding to both, and further led to some

of the units responsive to both to drop out of the representation of the adapter

stimulus and into the representation of the second stimulus. Thus, some of the

units in the representation of the adapter were suppressed, while others had
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the distribution of their inhibitory inputs shifted towards units selective for the

second stimulus (see Figures 3.8 and 3.9), due in part to divisive normalization

of the synaptic weights (Eq. 2). When the adapter pattern was presented again

in a third phase, the total inhibition received by the units suppressed during

the first phase was reduced. This is because either the inhibitory weights be-

tween units representing the adapter had decreased or the inhibiting units were

no longer active. The variety of inhibitory interactions is illustrated in Fig. 3.7,

which shows the change in the influence of one pre-synaptic unit over four post-

synaptic units. Another example is shown in Fig. 3.8.

The model can account for why some studies have found that repetition sup-

pression is affected by intervening patterns whereas others have not, in terms

of differences in the choice of the stimuli. In particular, Li and colleagues (Li,

Miller, and Desimone, 1993) used stimuli that were sufficiently different from

one another, which could therefore have produced cortical responses with lit-

tle overlap and hence little interference. Henson et al. (Henson et al., 2004;

Henson, 2015), on the other hand, used pictures of faces (famous versus unfa-

miliar), that despite their individual differences could have elicited overlapping

representations whose effect would have been further amplified by the large

number of intervening stimuli (around 100). In support of the model’s account

of these effects, is it interesting to note that Sawamura and colleagues (Sawa-

mura, Orban, and Vogels, 2006) found that the firing rates of neurons in monkey

infero-temporal cortex depend on whether a preceding stimulus was the same

(causing repetition suppression), different but capable of making the same neu-

ron fire (causing a response similar to the prediction in our overlap condition), or

different and not capable of making the neuron fire (causing a response similar

to the prediction in our non-overlap condition).

A limitation of the current modelling framework is that due to the discrete

timescales of the settling steps of the recurrent dynamics, and of the onset of new

iterations, neurophysiological timescales in the model are difficult to reconcile
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FIGURE 3.7: Changes in lateral connectivity underlying repetition suppression. This figure
exemplifies the changes in the effective contribution of four different inhibitory connections
from the same pre-synaptic neuron during each experimental phase. The width and color of
the lines indicates the strength of inhibition received by the post-synaptic units; the product
of the pre-synaptic activity and the weight of the inhibition. Each panel shows the cortical
representation of the adapter and overlap stimuli, on the first iteration of each phase. A;
iteration 0, B; iteration 100, and C; iteration 200. During the first phase the strength of the
inhibition between the co-active units (i.e., those belonging to the same representation) in-
creases, leading to a subset of them being suppressed. In the intermediate phase, however,
the inhibition between the shared units (overlap/adapt) and the units selective only to the
overlap pattern increased, and further led to some of the shared units to be removed from
the representation of the adapter in favor of the overlap stimulus. Thus, some of the units
in the representation of the adapter became suppressed, while others shifted the distribu-
tion of their inhibitory inputs to units in the representation of the overlap stimulus. When
the adapter was presented again, the total amount of inhibition that the units that had been
suppressed during the first phase received was reduced, as either the inhibitory weights be-
tween units in that representation had decreased or the units that inhibited them were not

active anymore. Another example is shown in Fig. 3.8.
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FIGURE 3.8: Activation and effective inhibition in the three phases of the protocol A snap-
shot of the activation produced by the combined model (afferent+inhibitory) at the beginning
of the three phases in the overlap condition (top row), together with the effective inhibition
received by the unit marked with a cross (bottom row). Effective inhibition is computed as
the product of the strength of the inhibitory connection between the unit marked with a cross
and each other unit, and the activation of the second unit. Below each plot is the value of
the total effective inhibition received by the marked unit (i.e., 0.31 at the beginning of the
simulations, 0.36 after the first phase of repetition suppression, and 0.30 after the interme-
diate/overlap phase). As discussed in the main text, the L-model produces an increase in
inhibition between the units active in the representation of the adapter (i.e., here from 0.31 to
0.36). The presentation of the overlap stimulus, however, shifts the inhibitory weights of the
units active in both the representation of the adapter and overlap stimuli to the units active in
the representation of the overlap stimulus only, thus reducing the amount of inhibition that
the adapter-selective units receive when the adapter is presented again (phase 3) and leading

to an increase in their activity.
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FIGURE 3.9: Timecourse and tuning curves of sample units. A-B. Activation of three units
in the model in the two conditions (A non-overlap, and B overlap) in the combined model
(afferent+inhibitory). The red and blue units show repetition suppression, with the blue unit
reaching a minimum value in the first phase of the protocol. The green unit exhibits repetition
enhancement dynamics. The red and green units show selectivity for the overlap stimulus,
and they are both suppressed during the intermediate phase. The purple unit is more selec-
tive to the intervening/overlap stimulus. C. Tuning curves of the three units with a fourth
that is selective to the overlap stimulus, in both the non-overlap and overlap conditions, at the
beginning of the three phases (t = 0,t = 100,t = 200). The tuning curves were computed by
presenting the three stimuli A-adapt, O-overlap and NO-non-overlap and allowing the dy-
namics of the network network to settle. The units 1, 3 and 4 exhibit repetition suppression,
while unit 2 shows enhancement. It is interesting to observe that, in contrast to the sharpen-
ing theory, units 1 and 2 actually broaden their tuning during the first phase. This is due to a
dis-inhibition of the units shared in the representations of the stimuli. Indeed, the presenta-
tion of the adapter leads to a strengthening of the inhibitory interactions from the units that
are active in its representation, which in turn produces a decrease in the strength of those
originating from units active only in the representation of the overlap stimulus, by means
of weight normalization. The effect of dis-inhibition is further supported by the decrease in
activity with repetition by units that responded strongly to the adapter. It is interesting to
note that this broadening of the tuning curves has been found experimentally (e.g., macaque
area MT [Kar and Krekelberg, (2016)]) and has been investigated in computer models of the
primary visual cortex based on recurrent inhibition [Teich and Qian, 2003]. In any case, we
observe sharpening in the intermediate phase for units 1, 2 and 4, with a stronger decrease in

response for the less preferred stimuli.
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precisely with psychological timescales. A single presentation of a stimulus on

a psychologically relevant timescale corresponds to multiple simulated ‘itera-

tions’ of the model. To reconcile stimulus presentations and model iterations

approximately, the model was run for an extended period of 1000 iterations.

The longer-term dynamics conformed to an exponential decay fit to the total

activation (y(t) = ae−bt + c), and thus match the empirically observed dynam-

ics of repetition suppression (Li, Miller, and Desimone, 1993; Sayres and Grill-

Spector, 2006). Although there is significant variability between studies of rep-

etition suppression regarding the number of repetitions after which activation

plateaus, which may depend on differences in protocol, species and recording

techniques, the various estimates in the literature agree broadly that a plateau

is reached within 5 − 10 repetitions. Thus, drawing a parallel to the fitted ex-

ponential curve in Fig. 3.10, which reaches a plateau within the 1000 iterations

displayed, it may be possible to consider the 100 iterations used throughout this

manuscript as roughly corresponding to a single repetition of the adapter stim-

ulus.

The mechanistic account of repetition suppression (and enhancement) of-

fered by the inhibitory sharpening theory may be challenged further by in-

vestigating the effects of interference in perceptual discrimination tasks, using

the degree of similarity and overlap in cortical representations to quantify the

‘confusion’ between similar stimuli. For example, multi-voxel fMRI analysis

such as representational similarity analysis (Kriegeskorte, 2009; Kriegeskorte

and Kievit, 2013), could be used to measure the similarity and overlap between

representations, and multi-voxel pattern analysis (Norman et al., 2006) could be

used to correlate the performance of a classifier built on the representations of

the stimuli (measured by fMRI imaging) with the behavioural discrimination

accuracy.

Experimental confirmation of the predictions of the model would provide
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evidence that repetition suppression reflects a transition in the cortical represen-

tation of stimuli from a distributed to a localist encoding.
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FIGURE 3.10: Longer term dynamics of repetition suppression. Repetition suppression in
the model was simulated for an extended period of 1000 iterations. The longer-term dynam-
ics conform to an exponential decay fit to the total activation (y(t) = ae−bt+c), approximating
the general form of the dynamics of repetition suppression measured by e.g., (Li, Miller, and

Desimone, 1993; Sayres and Grill-Spector, 2006).
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Chapter 4

Perceptually similar stimuli

disrupt recognition performance

4.1 Introduction

Catastrophic interference has been observed in humans during sequential associa-

tive learning, for which the process of learning new associations can disrupt pre-

viously acquired knowledge (Barnes and Underwood, 1959; Postman and Un-

derwood, 1973). It has also been observed and studied in the context of the plas-

ticity/stability dilemma for which artificial and biological neural networks have

to balance acquisition of knowledge and forgetting of previous information. In

artificial neural networks, catastrophic forgetting due to sequential learning has

been suggested to depend on the high degree of overlap between the distributed

intermediate representations produced (French, 1992).

The aim of this chapter is to explore the predictions of the ‘inhibitory sharp-

ening’ theory (Spigler and Wilson, 2017) and the L-model of cortical self-organization

(Stevens et al., 2013), upon which it is based, in the cognitive domain. Specif-

ically, we test the key prediction that stimuli that are hypothesized to produce

overlapping patterns of cortical activity can interfere with one another during

the process of familiarization. The prediction fits in the context of catastrophic

interference and may provide insight into its underlying dynamics if found to

be correct.



56 Chapter 4. Perceptually similar stimuli disrupt recognition performance

The study presented in this Chapter also serves as a basis for the work of

Chapter 5, to test whether the set of stimuli used does produce measurable cog-

nitive effects, that could then be looked for in an fMRI experiment.

A reduction in cortical activity caused by the continued exposure to an adapter

stimulus (repetition suppression) has been linked to perceptual learning and

priming, and thus with a decrease in reaction time and an increase in the recog-

nition accuracy of the adapter stimulus (Henson, 2015; Henson and Rugg, 2003;

Henson, Shallice, and Dolan, 2000), although the strength of this relationship is

debated (Sayres and Grill-Spector, 2006). A variety of changes in the distribu-

tion of cortical activity have been observed during task learning (Kelly and Gar-

avan, 2005). Here, we investigate whether the increase in cortical activity due

to interference between perceptually similar stimuli predicted by the inhibitory

sharpening theory can be observed as a decrease in recognition accuracy.

In this chapter, we show that the recognition accuracy can be modulated by

using intermediate stimuli designed to disrupt learnt cortical representations, in

line with the predictions from the sharpening theory introduced in Chapter 3.

4.2 Methods

4.2.1 Participants

Thirty-four healthy volunteers (15 female, aged 18-68, mean age 27.8) partici-

pated in the present study. The study was approved by the University of Sheffield,

Department of Psychology Ethics Sub-Committee, and carried out in accordance

with the University ethics guidelines. All volunteers provided informed consent

to take part in the study. Data from seven participants were not included in the

analysis due to poor performance in the first testing phase. Even though the

threshold for acceptance was set to 80% average accuracy in the first part of the

experiment, the discarded participants had scores lower than 40% and some-

times 20%, close to chance level for the specific task. The performance of the
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remaining participants was instead never lower than 90% − 95% except for a

single participant who scored 80% in a single condition. Twenty-one volunteers

participated in the experimental condition while six participated in a control

condition.

4.2.2 Materials

The procedure for presenting experimental stimuli was programmed in Python,

using the PsychoPy library (Peirce, 2007), and stimuli were presented to the par-

ticipants on a computer screen. The stimuli were faces generated by combining

two parts, a top and a bottom half of different female faces from the Chicago

Face Database (Ma, Correll, and Wittenbrink, 2015) and separated by a gap of

2 pixels, for a total size of 732 pixels in width and approximately 1000 pixels

in height, to produce novel faces exploiting by exploiting the Face Composite

Effect (Young, Hellawell, and Hay, 1987). No stimulus in the experiment was

composed with parts taken from the same face. The stimuli were pre-processed

using a combination of custom scripts to segment and cut them in such a way

that random composition of the different top and bottom parts always resulted

in a good alignment. Similar composite faces have been used in previous studies

to investigate the difference in parts-based versus holistic representation of faces

in the human visual cortex (Schiltz and Rossion, 2006; Schiltz et al., 2010) and

are known to affect the perception of the individual face parts (Young, Hellawell,

and Hay, 1987).

Each participant was presented with a set of five face stimuli sampled from

seven different pre-generated sets for the group in the experimental condition,

and five pre-generated sets of face stimuli for the group in the control condi-

tion. The five stimuli used in the experiments were split into two groups, the

first comprising stimuli referred to as F1, F2, and C, and the second comprising

stimuli referred to as H1 and H2. The first three stimuli (F1, F2 and C) were
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constructed in a similar way, by matching top and bottom parts belonging to dif-

ferent faces and without any condition specific differences. The last two stimuli

however were designed differently for each condition. In the control condition

both H1 and H2 were composed in the same way as the first three faces using

parts from novel faces, distinct from the others. In the experimental condition

however the H1 and H2 faces were composed by swapping the top and bottom

parts of the F1 and F2 stimuli used in the same run, so that the top part of H1

was set as the top half of F1 and the bottom part of H1 was set as the bottom

half of F2.

An example of the stimuli used is shown in Fig. 4.1. The participants watched

the stimuli from a normal viewing distance (approximately 50-100cm from the

computer screen), from which the stimuli subtended a visual angle of around

11◦ − 16◦ in width and 13− 19◦ in height.

4.2.3 Experimental Design

Each participant took part in four experimental phases, two ‘training phases’ in

which a sequence of composite face stimuli was presented in conjunction with

an integer label assigned to each face, alternated with two ‘testing phases’, one

following each of the training phases, in which participants viewed the faces and

were asked to recall the corresponding labels by pressing a keyboard button.

The experiment was based on a 2x2 mixed factorial design. A within-groups

factor with two levels was defined by the comparison of recall accuracy between

the first and second testing phases. A between-groups factor with two levels

was defined by the composition of the face stimuli that were used in the sec-

ond training phase. For participants assigned to the experimental condition,

two face stimuli introduced in the second training phase shared a top or bottom

half with two of the face stimuli presented in the first training phase. For par-

ticipants assigned to the control condition, two face stimuli introduced in the

second training phase were entirely novel.
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FIGURE 4.1: Stimuli and protocol of the behavioural experiment. Sets of 5 composite faces,
composed of separate top and bottom parts, were used in the experiment. The experimental
procedure involved training the participants to associate a number (1 to 5) to each face, first
by training on the first three distinct faces (F1, F2 and C), that did not share any top or bottom
part, and subsequently by presenting the final two stimuli, H1 and H2. The second set of
faces presented was composed by either using novel halves, distinct from the first stimuli,
in the control condition, or by swapping the top and bottom parts of the F1 and F2 stimuli
in the experimental condition. During the first training phase, the first 3 faces were shown
for 8 repetitions each in a randomized sequence. The second training phase presented the
last 2 faces for only 3 repetitions each. Testing was performed after each of the two training
phases, and involved presenting all the 5 faces (second test) or just the first 3 (first test) for 15

repetitions each, in a randomized sequence.
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Dependent variables were recall accuracy and reaction times for each com-

posite face stimulus in the two testing phases. The experiment was designed

to test the hypothesis that learning to recall two composite face stimuli in the

second training phase (H1 and H2), which share an upper or lower half with

previously learnt stimuli (F1 and F2), will reduce recall accuracy for the two

previously learnt stimuli (F1 and F2), compared to recall for a stimulus (C) with

no shared features as a within-participants control, and compared to a between-

participants control in which two entirely novel faces substituted H1 and H2.

4.2.4 Experimental Procedure

In the first phase, referred to as ‘training phase 1’, participants were shown a se-

quence of 24 stimuli. Each stimulus was a composite face image from a selection

of three composite faces (F1, F2 and C) followed by a corresponding integer

label. Stimuli were presented in a pseudo-random order such that each face was

presented eight times in total.

In the second phase, referred to as ‘testing phase 1’, participants were shown

faces from the same set of three faces, and they were requested to press a key-

board button corresponding to the integer label that was associated with each

face (no longer presented on screen). Forty five faces were presented in total,

with each face appearing fifteen times in pseudo-random order.

In the third phase, referred to as ‘training phase 2’, participants were shown

two new face stimuli (H1 and H2), followed by the corresponding integer label.

Six stimuli were presented in total, with each stimulus presented three times.

In the fourth and final phase, referred to as ‘testing phase 2’, participants

were shown all five face stimuli, without the integer labels, and were required

to respond by pressing the keyboard buttons 1, 2, 3, 4 or 5. Seventy-five stim-

uli were presented in a pseudo-random order such that each stimulus was pre-

sented fifteen times.
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The association between each of the five composite faces and its integer label

was randomized for each participant, as was the composition of each composite

face.

Figure 4.1 shows a summary of the protocol together with an example set of

faces used.

4.3 Results

4.3.1 Experiment

The recognition accuracy of human participants was recorded for each face stim-

ulus before and after training to recognize the disruptive stimuli (H1 and H2).

The results are shown in the bar plot in Figure 4.2A, averaged across the partic-

ipants in each condition. While the control C was unaffected by the disruptive

training, the stimuli F1 and F2 were partially forgotten due to the interference of

the disruptive training, and suffered a significant drop in recognition accuracy,

with a mean decrease of 26.35% for F1 and 23.49% for F2. All the stimuli were

learnt to above chance level (33% in the first testing phase, 20% in the second) as

confirmed by a Wilcoxon Signed Rank test (p < 0.001 in each condition).

A Kruskal-Wallis test found significant differences between the recognition

accuracy of the three faces F1, F2 and C after disruption, χ2(2) = 26.77, p <

0.0001. A post-hoc Tukey-Kramer analysis showed no difference between F1

and F2 (p = 0.97) but a significant difference between F1, F2 and C (p < 0.0001).

A similar test on the accuracies before disruption reported no difference between

the conditions (χ2(2) = 3.86, p = 0.14), as was expected due to the lack of dif-

ferences between the faces F1, F2 and C prior to disruption. Further, a Wilcoxon

Ranked Sum test confirmed the significant decrease in performance in recogniz-

ing the faces F1 and F2 (Z = 4.94, p < 0.0001 and Z = 4.43, p < 0.0001) but no

change in the control (Z = −1.4, p = 0.16). A similar difference was found in

the reaction times after training to recognize the last two stimuli (χ2(2) = 21.32,
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FIGURE 4.2: Results of the experiment. A,D Recognition accuracy for each face stimulus
before and after the second block of training with the disruptive stimuli (A: experimental con-
dition, D: control condition). The data shown is averaged across participants and bars denote
standard error. B,E Reaction time for each face stimulus. C,F Confusion matrix relative to the
last phase of testing over all the stimuli. Faces F1 and F2 are often confused with the distrup-
tors H1 and H2 in the experimental condition, where the stimuli H1 and H2 are composed
by swapping the top and bottom halves of the F1 and F2 faces, while no confusion between

stimuli is observed in the control condition.
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p < 0.0001), with a significant increase for the F1 and F2 faces but no increase

for the face C, while no difference was present between the reaction times before

the second training phase (χ2(2) = 0.59, p = 0.74).

Inspection of the confusion matrix for the final testing phase (Figure 4.2C)

shows that the decrease in recognition performance to the F1 and F2 stimuli is

due to mis-classifications between these stimuli and the half stimuli H1 and H2.

Further, the decrease in recognition performance cannot be attributed to the

increase in the difficulty of the task due to learning to recognize five faces instead

of three. The control condition, indeed, showed that participants can achieve

high recognition accuracy in the same protocol if the last two stimuli H1 and H2

are composed with novel parts, contrary to the experimental condition in which

they were made by swapping the top and bottom halves of the F1 and F2 stimuli.

A Kruskal-Wallis test found no significant differences between the recognition

accuracy of the three faces F1, F2 and C both before (χ2(2) = 2.41, p = 0.3)

and after training on the last two faces (χ2(2) = 0.23, p = 0.89). The same

test also found no differences between the reaction times (before, χ2(2) = 0.61,

p = 0.74, and after χ2(2) = 1.09, p = 0.58). It is interesting to observe that even

if not specific for particular cases, an increase in reaction times is observed even

in the control condition. The increase, likely due to the increased difficulty of

the task (recognizing five faces instead of three), is however more limited than

in the experimental condition (17.6%, 10.9% and 18.2% for the control condi-

tion, compared to 61.3% and 68.3% in the experimental condition). The reaction

time to the C stimulus in the experimental condition did not change significantly

(−0.8% mean change), which may be due to the fact that, due to it being the only

stimulus that did not share any parts with the other faces, it was the easiest to

identify in the second testing phase.
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4.4 Discussion

We investigated how the perception of visual objects can be affected by inter-

ference due to stimuli hypothesized to generate overlapping cortical responses

under the assumption that the similarity between the patterns used, especially

in sharing significant parts and features, may correlate with similarity and over-

lap in evoked cortical activations, at least in higher cortical visual areas (e.g., as

partially observed in (Tsunoda et al., 2001)). In particular, previously learned

objects were found to be partially forgotten in the process of learning to recog-

nize different objects that share a subset of their component parts and features.

The process of forgetting manifests as a decrease in recognition accuracy and

an increase in the reaction time for the faces that were targeted for disruption.

That is, the faces F1 and F2 in the experimental condition that were disrupted

by H1 and H2. The use of a control face C that was not affected by the predicted

disruption showed that the effect was selective and was not simply due to the

increased difficulty of the task due to the larger number of faces to be recog-

nized in the second testing phase (five faces versus the original three). A control

condition was then explored by replacing the H1 and H2 stimuli with novel

faces that did not share significant features with the first three. In this case, the

performance on the task was found not to be affected by the second training

phase, further showing that participants are capable of learning to recognize all

five faces without interference. Together, the evidence presented suggest that

the effect of decrease in recognition performance observed in the experimental

condition is to be attributed to the disrupting stimuli.

The potential link between repetition suppression and performance in per-

ceptual learning tasks makes the results of this experiment compatible with the

prediction from the inhibitory sharpening theory on the effect of overlapping

cortical representations. Of particular interest is that the L-model could explain

similar effects of confusion between similar objects by relying on the capabil-

ity of downstream neurons to decode cortical representations based on linear
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decoding of the patterns of activation (for example, Pitkow et al., 2015).

It is interesting to note that similar results were found in previous work,

that however used a different protocol (Barnes and Underwood, 1959; Postman

and Underwood, 1973). The previous experiment involved training a group of

volunteers to recognize word pair associations from a list A-B (pairing words

in A with the corresponding one in B). Catastrophic interference was then ob-

served by training them on a different set of associations A-C that linked the

same words in the first list with a novel association, similarly to the interference

observed in our experiment.
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Chapter 5

Neuroimaging investigation of

the inhibitory sharpening theory

5.1 Introduction

A useful way to study cortical dynamics in a large area of the neocortex without

directly recording from the individual neurons involved is to exploit the phe-

nomenon of repetition suppression, where the repeated presentation of a stimulus

leads to an overall decrease in the level of stimulus evoked cortical activation (Li,

Miller, and Desimone, 1993; Kelly and Garavan, 2005; Grill-Spector, Henson,

and Martin, 2006). The effect has been measured using a variety of recording

techniques (fMRI, EEG, single-neuron) and in a variety of mammalian species

(Li, Miller, and Desimone, 1993; Brown and Xiang, 1998; Henson and Rugg,

2003; Larsson and Smith, 2012; Henson, 2015) and has been shown to be affected

by attention and task-dependency (Henson et al., 2002; Henson, 2015), short-

term neural adaptation (Epstein, Parker, and Feiler, 2008), expectation (Larsson

and Smith, 2012), and synchrony (Gotts, Chow, and Martin, 2012). Repetition

suppression measured with neuroimaging can then be used to infer the under-

lying neural mechanisms by means of computational models that predict fMRI

responses from patterns of cortical activity (Alink, Abdulrahman, and Henson,

2017; Spigler and Wilson, 2017), as for example was done in a simplified way in

Chapter 3 by simply averaging the activation of all the model units.
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Different theories have been proposed to explain the neural dynamics that

produce repetition suppression (Grill-Spector, Henson, and Martin, 2006). For

example, the sharpening theory explains repetition suppression in terms of a

narrowing of the tuning curves of the neurons involved, which leads to an in-

crease in the selectivity of neural activity (Desimone, 1996; Wiggs and Martin,

1998). The fatigue theory instead suggests that repetition suppression reflects

a depletion in the resources required by neurons in order to spike, leading to a

decrease in the overall activation (Ringo, 1996). Predictive coding has also been

proposed as an underlying mechanism, with the prediction error due to a novel

sensory stimulus decreasing during repetition and familiarization (Grotheer and

Kovács, 2016; Auksztulewicz and Friston, 2016).

Chapter 3 presented the inhibitory sharpening theory as an extension to

sharpening, focusing on the contribution of plasticity in lateral cortical interac-

tions on the effect (Spigler and Wilson, 2017). The theory has been made explicit

in a computational model, leading to the central prediction that the magnitude

of repetition suppression should be affected by the intermediate presentation

of specially designed stimuli in between repetitions of the adapter stimulus. In

particular, intermediate stimuli designed to produce a pattern of cortical activity

that overlaps with that produced by the adapter should produce a disruption of

the effect of repetition suppression, resulting in a smaller magnitude of suppres-

sion compared to a control case in which the intermediate stimulus produces

little overlap.

This prediction can be considered in a more general context. Most areas in

the mammalian neocortex exhibit distributed patterns of activation in response

to sensory stimuli (Tsunoda et al., 2001; Pasupathy and Connor, 2002; Pouget,

Dayan, and Zemel, 2000; Connor, 2005; Georgopoulos, Schwartz, and Kettner,

1986). A direct consequence of this is that different stimuli can trigger activa-

tion in a common subset of neurons. The single presentation of a stimulus can

be sufficient to produce lasting plastic changes in the synapses of the neurons
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involved, as seen for example in at least some cases of repetition suppression.

There should therefore be an interaction between the responses to stimuli that

activate a large sub-set of shared neurons, that is, whose cortical representations

overlap. This is in contrast with the current assumption implicit in typical exper-

iments that the effect of repetition suppression for each stimulus is independent

from the others. As well as discriminating between theories of repetition sup-

pression, it is thus also important to characterise whether a sequence of stimuli

can produce interference due to the activation of a shared sub-set of neurons.

The primary aim of this study is to test the prediction of the inhibitory sharp-

ening theory in a neuroimaging experiment, by replicating the essential compo-

nents of the experimental design that was used to derive it in a simulation. In

any case, even a positive verification of the predictions would require further

supplementary investigation to determine whether the effect was due to lat-

eral inhibitory plasticity, as hypothesized in the inhibitory sharpening theory, or

whether other mechanisms could explain the same results.

A second more general aim is to investigate how stimuli capable of produc-

ing overlap in their cortical patterns of activity may affect the dynamics of repe-

tition suppression. One of three potential outcomes is expected from the exper-

iment. We should see either i) a lack of changes in the magnitude of repetition

suppression attributable to cortical overlap, ii) an increase in the amount of rep-

etition suppression as predicted by, e.g, the fatigue theory, due to the continued

adaptation of the shared neurons, or iii) a reduction in the amount of suppression,

as predicted by the inhibitory sharpening theory.

As in Chapter 4, we will use face stimuli because face processing in the hu-

man and monkey brain has been studied extensively (Kanwisher, McDermott,

and Chun, 1997; Haxby, Hoffman, and Gobbini, 2000; Tsao et al., 2006; Tsao and

Livingstone, 2008) and the relevant cortical areas involved are known to exhibit

repetition suppression (Henson, Shallice, and Dolan, 2000; Henson et al., 2004;

Gilaie-Dotan and Malach, 2007; Goffaux et al., 2013; Henson, 2015). In particular,
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two cortical areas have been identified to respond preferentially to face stimuli,

the “Occipital Face Area” (OFA, in the Inferior Occipital Cortex, IOG) and the

“Fusiform Face Area” (FFA, in the lateral Middle Fusiform Gyrus, MFG), with

right hemispheric dominance. The neural encoding of faces in those areas is

still debated, though evidence was found for a sparse population code (Young

and Yamane, 1992). Further, face processing in humans is also thought to have

separate parts-based and holistic processing components, with a tendency for

the first to dominate in the OFA and the second in the FFA (Schiltz and Ros-

sion, 2006; Schiltz et al., 2010). Moreover, it is possible to produce novel faces by

combining a “top” and a “bottom” part of different faces, taking advantage of

the composite face effect (CFE) (Young, Hellawell, and Hay, 1987), for which the

same “top” part of two faces looks slightly different if the “bottom” parts are dif-

ferent, as long as the two halves are well aligned. The composite face effect has

been used by others to differentiate between parts-based and holistic process-

ing of faces in the context of repetition suppression (Schiltz and Rossion, 2006;

Schiltz et al., 2010), and thus appears to be a good candidate to produce the type

of overlap of cortical activations that we are interested in. Indeed, cortical areas

that represent the stimuli by parts would be expected to produce similar pat-

terns of activation when the same part (top or bottom) is re-used in a different

face, while holistic processing areas might lead to similar activations depending

on the overall degree of similarity of stimuli sharing the same part.

5.2 Materials and Methods

5.2.1 Participants

Thirteen healthy volunteers (4 female, aged 18-28 years, mean age = 22.8) with

normal or corrected to normal vision participated in the study. The study was

approved by the University of Sheffield, Department of Psychology Ethics Sub-

Committee, and carried out in accordance with the University ethics guidelines.
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All volunteers provided informed consent to take part in the study.

5.2.2 Stimuli

The stimuli used in the study are faces generated by combining two parts, the

top and bottom halves of different faces from the Chicago Face Database (Ma,

Correll, and Wittenbrink, 2015), matched by gender, and separated by a gap of

2 pixels. No stimulus in the experiment was composed of parts taken from the

same face, and each part was only used in a single stimulus. Similar composite

faces have been used in previous studies to investigate the difference in parts-

based versus holistic representations of faces in the human visual cortex (Schiltz

and Rossion, 2006; Schiltz et al., 2010) and are known to affect the perception

of the individual face parts (Young, Hellawell, and Hay, 1987). Examples of the

stimuli are shown in Fig. 5.2. The images used to generate the composite faces

are 84 white female and 75 white male faces, while 78 latina female faces were

used to compose the targets. The targets were shown upside-down and were

85% the size of the other images. The faces were processed using a combination

of custom scripts to segment and cut them in such a way that random selection

of the top and bottom parts always resulted in a good alignment. Throughout

the experiment, the stimuli were presented on a monitor at a distance of approx-

imately 220− 240cm that the volunteers could see through a single-mirror setup

from inside the scanner. The stimuli were approximately 4.75◦ − 5.15◦ in width

and 5.9◦ − 6.6◦ in height.

5.2.3 Experimental Design

Each participant took part in three scanning sessions, with a brief setup interval

in between. An event-related design was used, in which a sequence of composite

face stimuli was presented grouped in consecutive triplets.

The experiment used a within-subjects design with three levels. The inde-

pendent variable was the configuration of the second stimulus in a sequence
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of three face stimuli. The dependent variable was the difference in response to

identical stimuli presented as the first and third faces in the sequence. Three con-

ditions were defined by the choice of the second face stimulus in the sequence.

In the ‘Same’ condition, the second face was identical to the first and third. In

the ‘Different’ condition, the second face was different from the first and third.

In the ‘Half’ condition, the second face was identical to the first and third in

either its upper or lower half only. Sequences of face triplets from each condi-

tion were pseudo-randomly interspersed, and haemodynamic responses were

recorded using functional magnetic resonance.

The experiment was designed to test the hypothesis that the magnitude of

repetition suppression (response to the first minus the response to the third in

each triplet) would be strongest for the Same condition, weaker for the Different

condition, and weakest for the Half condition. Specifically, the hypothesis re-

flects the prediction of the inhibitory sharpening theory in this protocol that the

use of the specially designed intermediate stimuli in the Half condition should

result in a lower magnitude of repetition suppression compared to the Different

condition.

Indeed, different theories of cortical function predict contrasting differences

in the magnitude of repetition suppression in the three conditions, especially in

the Half versus Different condition, or even a lack of differences in case corti-

cal overlap was predicted not to affect repetition suppression. A comparison

of the predictions made by three different theories, fatigue, inhibitory sharpening,

and lack of any overlap-dependent effects is shown in Fig. 5.1. The fatigue theory

based on neural habituation predicts a stronger amount of suppression for those

neurons that are shared when presenting a stimulus that produces overlap in

cortical activity in between successive repetitions of the adapter (i.e., Half con-

dition), compared to the case in which overlap is absent (Different condition).

On the opposite end, the inhibitory sharpening theory has produced specific
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predictions in this context by means of computer simulations (Spigler and Wil-

son, 2017), predicting an opposite effect of decrease in the amount of suppression

compared to a control in which the intervening stimulus does not produce sig-

nificant amounts of overlap. A similar dynamics could also be derived in the

context of predictive coding, as we briefly discussed in previous work (Spigler

and Wilson, 2017), although specific simulations should be developed to make

more accurate predictions in the context of the protocol used here.

5.2.4 Experimental Procedure

A graphical summary of the experimental procedure is shown in Fig. 5.2. Each

of the three experimental sessions was split into 5 blocks in which a sequence

of stimuli was shown on a monitor, alternated by a fixation pause lasting 20s.

Stimuli were either targets (a single inverted face) or were grouped into consec-

utive sequences of three faces, together corresponding to an experimental trial.

Each stimulus was displayed for a fixed time of 900ms following a small cross

at the center of the screen, leading the stimulus by a uniform random time be-

tween 400ms and 600ms. The Inter-Stimulus Interval (ISI, i.e., the time between

the disappearance of one stimulus and the onset of the next) was sampled uni-

formly at random between 2500ms and 2700ms. This introduces a small jitter

in the presentation of the stimuli and improves fitting of the haemodynamic re-

sponse function. The participants were instructed to look at the fixation dot at

the center of the screen, that was present in between presentations of the stim-

uli before changing to the cross that informed the participants of the imminent

presentation of the next stimulus. The pause blocks were signalled by replacing

the dot with a small empty circle. During each session, the participants were

instructed to press a button whenever they saw a target, in order to provide an

attentionally demanding task that was orthogonal to the experiment (as done in,

e.g., (Henson, Shallice, and Dolan, 2000)).
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FIGURE 5.1: Predicted magnitude of RS in the different conditions. Different theories of
cortical function predict contrasting differences in the magnitude of repetition suppression
in the three conditions used in the protocol. For example, the fatigue theory predicts that the
cortical units shared between the stimuli in the Half condition would undergo further adap-
tation during the presentation of the middle stimulus. This results in an increased magnitude
of suppression in the Half condition compared to the Different condition. The inhibitory
sharpening theory (Spigler and Wilson, 2017), on the contrary, predicts an opposite effect for
which the shared cortical units become dis-inhibited and increase in activation, resulting in
a weaker magnitude of suppression when the adapter is repeated. A third hypothesis is fi-
nally reported for which no effect due to cortical overlap is present. Note that the difference
between the Same and Different conditions is well established in the literature, as two repeti-
tions of an adapter are known to produce stronger repetition suppression than a single one

(for example (Li, Miller, and Desimone, 1993; Sayres and Grill-Spector, 2006)).



5.2. Materials and Methods 75

The main part of the experiment consisted of three different trial types. Each

trial was composed by a sequence of three faces, the last one being always a

repetition of the first one (henceforth called the adapter stimulus). The trials dif-

fered in the composition of the middle face, which was either the same as the

other two (Same trials), different (Different trials) or was generated by keeping

either the top or bottom half of the adapter and replacing the complementary

part with a unique one (Half trials). The three sessions combined resulted in 34

Same trials, 34 Different trials, and 38 Half trials, half of which were generated

by keeping the top part fixed and half by keeping the bottom part fixed. 46 tar-

gets were inserted at random positions in the gaps between trials. The sequence

of stimuli and the choice of the individual parts composing the stimuli were ran-

domized between different sessions and subjects. Presentation of visual stimuli

was controlled using Python and PsychoPy (Peirce, 2007).

5.2.5 Scanning Parameters

Participants were scanned in a 3T MRI scanner (Achieva 3T, Philips Health-

care, Best, NL) with a 32-channels head coil at the University of Sheffield. A

high-resolution T1-weighted ‘structural’ MRI was acquired for each participant

at the beginning of the experiment using an MPRAGE (Magnetization Prepared

Rapid Acquisition Gradient Echo) sequence (repetition time TR=3000ms, echo

time TE=4.4ms, flip angle=8◦, 256x256 matrix, field of view 240x240x170mm).

T ?2 -weighted Echo-Planar Imaging (EPI) was then performed using the BOLD

contrast. During each scan, twenty-five axial slices were acquired in ascending

order (TR=2000ms, TE=35ms, flip angle=90◦, matrix size=128x128, field of view

230x230x93.75mm, in-plane voxel size 3x3mm with 3.75mm slice thickness and

no gap). The T ?2 scans did not cover the whole brain, and excluded the inferior

cerebellum and superior frontal/parietal cortices. The field of view was posi-

tioned on a midline T1 sagittal plane, centered on, and angled to, the anterior

and posterior genu of the Corpus Callosum. The Shim box was positioned at
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FIGURE 5.2: fMRI experimental protocol. Each scanning session consisted of 5 blocks con-
sisting in a sequence of face stimuli, interleaved with a 20 seconds fixation baseline. The stim-
uli presented were either grouped in trials of three stimuli or were inverted faces presented
in between trials as targets, that the participants were instructed to recognize by pressing a
button. The three faces in each trial shared a similar structure, with the third stimulus being a
repetition of the first one, the adapter. The trials were divided into three conditions, differing
in the type of stimulus used for the second face in each triplet. In the Same trials, all the three
faces were identical repetitions of the adapter, while in the Different trials, the middle stimu-
lus was different from the other two. The middle stimulus in the Half trials was constructed
by using either the same top or bottom halves of the adapter and matching it with a novel

part.
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a slightly increased angle to the slices, to avoid the frontal sinuses. 268, 256

and 251 volumes were acquired respectively in 3 runs, excluding three initial

volumes that were discarded to allow saturation of T1 effects. The number of

volumes acquired in the three sessions was 268, 256 and 251.

5.2.6 Region of Interest Analysis

Region of Interest (ROI) analysis was performed using the MarsBaR toolbox

(Brett et al., 2002). Unbiased masks for left and right “Occipital Face Area”

(OFA) and “Fusiform Face Area” (FFA) were computed using a separate, previ-

ously published open access dataset (Wakeman and Henson, 2015) with a group-

level Face > Scrambled Face contrast (Family-Wise-Error-corrected, threshold at

p = 10−5, minimum 20 voxels per cluster). The peak coordinates and size of the

resulting clusters are reported in Table 5.1.

Region Size (# voxels) Peak (mm)
Right OFA 113 39 −82 −11
Right FFA 133 39 −46 −17
Left OFA 45 −36 −85 −14
Left FFA 63 −39 −49 −20

TABLE 5.1: Masks used for the region of interest (ROI) analysis.

5.2.7 Data Analysis

Analysis of the data was performed using the SPM12 software (SPM12, Well-

come Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm

/software/spm12) and custom MATLAB scripts. The data was pre-processed

to correct for head movement and slice timing (synchronized to the middle slice,

slice 13). For each subject, the T1-weighted structural image was segmented,

co-registered to the mean BOLD image, and normalized to the MNI template.

All the resulting BOLD scans were re-sampled to 3mm isotropic voxels and

smoothed using a 3D Gaussian kernel with FWHM=8mm.
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The time series of the BOLD scans were high-pass filtered at a cutoff fre-

quency of 1
128s

−1 and an AR(1) auto-regression model was used to account

for temporal correlations in the data. A General Linear Model (GLM) was fit-

ted for each subject using the canonical haemodynamic response function with

10 regressors: first presentation of faces, middle stimuli and repetition of the

adapters, separately for each of the three conditions, and targets. Noise covari-

ates were estimated using the GLMDenoise toolkit (Kay et al., 2013) and added

to the GLM, which was then solved using Ordinary Least Squares. Group-level

analysis was conducted using a random-effects model with the summary statis-

tics computed from each subject.

5.3 Results

A second-level random effects analysis showed statistically significant suppres-

sion of the BOLD signal with repetition in the bilateral occipital visual areas,

including the Occipital Face Area (OFA), and in the Fusiform gyri, including the

Fusiform Face Area (FFA). Figure 5.3 shows the thresholded statistical paramet-

ric map (SPM) for the difference between the first presentations of the adapter

stimuli and their repetition across all conditions. For this analysis the threshold

was set at p = 0.01 without correction for multiple comparisons and a minimum

cluster size was set at 20 voxels. The statistical parametric map was restricted

to the voxels in which the positive effect of the first presentation of the adapters

across conditions was higher than a threshold of p = 10−5. The thresholded

SPM of the positive effect of the first presentation of faces is reported in Ap-

pendix B as Fig. B.1. The estimated haemodynamic response function was next

computed as a peri-stimulus time histogram (PSTH) of the BOLD response to

first and second faces in each trial (immediate repetition) in the Same condition,

averaged across voxels in the right OFA and FFA areas respectively. The es-

timated haemodynamic response functions match the previous literature and
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FIGURE 5.3: Repetition suppression: single-voxel analysis and ROI PSTHs. Second-level
thresholded statistical parametric map showing repetition suppression across all conditions
(difference between the first face and its repetition, no family-wise error correction, threshold
at p = 0.01 and minimum of 20 voxels, masked by the positive effect of the first presentation
of faces across conditions with a threshold of p = 0.00001, as shown in Appendix B as Fig.
B.1). Lower-right: peri-stimulus time histogram (PSTH) of the BOLD response in the right
OFA and FFA areas to the first presentation and consecutive repetition of the same stimulus,

averaged across all the participants. Bars show the standard error.
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show repetition-dependent suppression.

As the first presentation of the adapters in the different conditions is always

a novel face carrying no condition-specific information, no significant differ-

ences should be expected between their regressors in each condition, although

noise may be present due to different attentional effects and other perturbations

in each trial. This was confirmed by a one-way ANOVA in each area (lFFA

F (2, 36) = 0.04, p = 0.96; lOFA F (2, 36) = 0.16, p = 0.85; rFFA F (2, 36) = 0.11,

p = 0.90; rOFA F (2, 36) = 0.23, p = 0.80). A bar plot of the regressors compared

in the ANOVA is included in Appendix B as Fig. B.2.

To perform the analysis of the condition-specific differences in activation, we

then computed the magnitude of suppression for each stimulus in each condi-

tion (Same, Different and Half) by subtracting the beta value of each regressor

(second and third stimuli in each trial) from its corresponding first presentation

(e.g., RSrepeated,same = βfirst,same − βrepeated,same). Figure 5.4 shows the com-

puted values, averaged across all the participants. The original beta values for

each regressor are included in Appendix B as Fig. B.3.

The main analysis was conducted on the magnitude of suppression of the

adapter on its repetition (third stimulus in each trial) across the different condi-

tions. This corresponds to the contrasts in Figure 5.4 (left). A one-way ANOVA

between the computed magnitudes of repetition suppression found no statis-

tically significant differences between the conditions in areas lFFA (F (2, 38) =

0.22, p = 0.8), lOFA (F (2, 38) = 0.79, p = 0.46) and rFFA (F (2, 38) = 0.28,

p = 0.76). Differences in the magnitude of repetition suppression between con-

ditions in the right OFA were found to be near borderline significance with

F (2, 38) = 3.21, p = 0.052. A Fisher’s Least Significant Differences post hoc

test further revealed a significant difference between the Same and Half condi-

tion (p = 0.02) in the right OFA. While the difference between the Different and

Half conditions was not found to be significant (p = 0.36), a trend in the non-

significant differences seems consistent with the inhibitory sharpening theory,
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for which repetition suppression in the Half condition should be weaker than in

the Same and Different conditions. We observe that a similar trend is also con-

sistently present in all the other areas, albeit with a high variance. It is thus

possible that using a larger number of participants may reduce the noise and

reveal the statistical difference corresponding to this trend. The post hoc test

further revealed significant effects of repetition for each condition in each area

(lFFA: Same p < 0.01, Different p < 0.05, Half p < 0.05; rFFA: Same p < 0.01,

Different p < 0.05, Half p < 0.05; rOFA: Same p < 0.001, Different p < 0.001, Half

p < 0.05), except for the left OFA (Same p = 0.08, Different p = 0.5, Half p = 0.95).

Further analysis focused on the potential differences in the trials of the Half

condition depending on whether the part that was replaced was the top or the

bottom part. Applying a paired t-test to the magnitude of repetition suppression

did not reveal any significant differences between the two subsets of trials in

the condition in any area, regardless of position within the trial triplet (middle

stimulus in lFFA t(24) = −0.83, p = 0.42, rFFA t(24) = −0.29, p = 0.78, lOFA

t(24) = 0.72, p = 0.48, rOFA t(24) = 0.15, p = 0.88 and repeated stimulus in lFFA

t(24) = −0.46, p = 0.65, rFFA t(24) = 0.58, p = 0.56, lOFA t(24) = −0.69, p =

0.50, rOFA t(24) = −0.50, p = 0.62).

It is also of interest to look at the differences between magnitudes of sup-

pression for the stimuli in the middle position of the triplets. The value of the

regressors, subtracted from the corresponding first presentation of the adapter

stimuli, is shown in Fig. 5.4 (right). A one-way ANOVA between the computed

magnitudes of suppression found no statistically significant differences between

the conditions in any area (lFFA F (2, 38) = 1.21, p = 0.31, lOFA F (2, 38) = 0.6,

p = 0.56, rFFA (F (2, 38) = 1.49, p = 0.24)), except for the right OFA that was

near the borderline of significance (F (2, 38) = 2.7, p = 0.08). A Fisher’s Least

Significant Differences post hoc test further revealed a significant difference be-

tween the Same and Different conditions in the right OFA area (p < 0.05). The
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FIGURE 5.4: Repetition suppression in the different conditions. Magnitude of repetition
suppression for each condition, measured as the difference between the beta values of first
presentation and repetition (left) and the middle stimulus (right) separately for each condi-
tion (Same, Different and Half, averaged across the mean values for each participant. Vertical
lines show the standard error, stars denote statistically significant repetition suppression, and
horizontal lines denote significant differences in the magnitude of suppression. Despite the
lack of statistically significant differences, interesting trends seem to be present in a way com-

patible with the inhibitory sharpening theory (Spigler and Wilson, 2017).
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difference between the Same and Half conditions was found to be near the bor-

derline of significance (p = 0.07), and it is thus possible that the lack significance

can be attributed to the small number of participants compared to the amount

of noise in the data. A similar difference between the Same and Half conditions

was also found to be near significance in the right FFA area (p = 0.086). Finally,

a one-sample t-test for each condition determined a significant suppression of

activity in the Same condition in all areas (lFFA t(12) = 4.37, p < 0.001; rFFA

t(12) = 4.04, p < 0.01; rOFA t(12) = 5.77, p < 0.001) except for the left OFA

(t(12) = 1.79, p = 0.1). Interestingly, the right OFA also showed significant

suppression in both the Different and Half conditions (Different, t(12) = 2.26,

p < 0.05; Half, t(12) = 2.79, p < 0.05).

5.4 Discussion

Sensory stimuli have been shown to produce broad patterns of distributed ac-

tivity in the corresponding areas of mammalian neocortex (Tsunoda et al., 2001;

Pasupathy and Connor, 2002; Pouget, Dayan, and Zemel, 2000; Connor, 2005;

Georgopoulos, Schwartz, and Kettner, 1986). The single presentation of a stimu-

lus has been found to be sufficient to produce short-term and even long-term

changes in the responses of the selective neurons active during its presenta-

tion. Here was investigated the effects of short-term to medium-term synaptic

changes due to a sequence of stimuli designed to produce overlap in their cor-

tical response patterns, that is, to stimuli thought to activate a shared subset of

neurons. In this study, repetition suppression to novel face stimuli was used

to measure the effect, as it is known to produce short-term plasticity or adap-

tation effects (Henson, 2015) in face-selective cortical areas of monkeys and hu-

mans. The face stimuli were designed using the Composite Face Effect (Young,

Hellawell, and Hay, 1987), giving us freedom to compose new faces that pro-

duce a holistic perception but allow for the composition of different parts or
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features.

To test the effect of cortical overlap on the strength of repetition suppression

we adopted a protocol in which each trial consists of a sequence of three faces,

an adapter repeated in the first and last position, and a middle face whose com-

position was varied between conditions. The middle face could be identical to

the adapter (Same condition), different and thus not generally sharing parts or

features with the adapter (Different condition), or composed by keeping either

the same top or bottom half of the adapter and matching it with a complemen-

tary part taken from a separate set of new faces (Half condition), so that the

evoked pattern of activity might show a higher degree of overlap with that of

the adapter than in the Different condition.

Repetition suppression to novel faces was significant in the bilateral OFA

and FFA areas, as found in previous studies (Henson, 2015), except for the left

OFA in which it was only present as a trend, possibly due to its small effect size.

Condition specific differences observed in the magnitude of repetition suppres-

sion (as approximated by the difference in the value of the regressors of the first

minus the third stimulus in each triplet) only reached statistical significance in

the right OFA, where the Half condition produced significantly weaker suppres-

sion than the Same condition (see Figure 5.4). It is interesting to note that all the

cortical areas, and in particular the right OFA, showed a clear trend in agree-

ment with the predictions of the inhibitory sharpening theory (compare Figure

5.1 with Figure 5.4 (left) ), which predicts the strongest suppression in the Same

trials, intermediate suppression in the Different trials and the weakest suppres-

sion in the Half trials. This trend was not statistically significant, so strong con-

clusions cannot be drawn. However, the amount of variance was found to be

high compared to the differences between the three conditions, so the lack of

statistical significance may be due to a small sample size. Future experiments

with more participants are required to draw stronger conclusions. In any case,

the significant difference in the Same and Half conditions could decrease the
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likelihood that the interaction due to cortical overlap was caused by neural fa-

tigue, as in that case the magnitude of suppression in the Half condition would

be predicted to be larger than in the Different condition. We also note that pre-

vious studies (for example, Li, Miller, and Desimone; Sayres and Grill-Spector,

1993; 2006) showed that the difference between the Same and Different condi-

tions should be significant, as the Same condition features two repetitions of the

same stimulus versus the single repetition in the Different condition. The lack

of statistical significance for this difference in any area may thus further support

our conclusion that more data is required to reveal the true statistical differences

between the different conditions. A separate test found no difference within the

Half condition, between trials that retained the same top or the same bottom

parts.

Further inspection of the difference in the BOLD signal between the first and

middle faces in each trial found a significant difference between the Same and

Different conditions in the right OFA. This was expected, as the Same condi-

tion corresponds to an immediate repetition of the adapter in this case, while

the Different condition would not be expected to produce any repetition effects.

It is interesting to note however that the middle face in both the Different and

Half conditions did produce statistically significant suppression of activity in the

right OFA and a strong but non-significant trend in all the others, which may be

due to some degree of adaptation of similar facial features even when different

faces are used. This was observed in previous studies that exploited repetition

suppression to faces constructed with the Composite Face Effect to investigate

holistic versus parts-based encoding of faces in the neocortex (Schiltz and Ros-

sion, 2006; Schiltz et al., 2010). This result has implications for the design of

standard repetition suppression protocols, as mild suppression may be present

due to the sequential presentation of faces, even if they are not repeated.

The choice of stimuli to use in the experiment in order to produce overlap in

their cortical activations in a controlled way is, however, not trivial. The choice
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of the Composite Face Effect is motivated by the idea of using different objects

that share common features or sub-parts, exploiting a high-level population cod-

ing of objects as a combination of parts and features as found in primate area V4

(Pasupathy and Connor, 2002), IT (Tsunoda et al., 2001) and OFA (Schiltz and

Rossion, 2006). Other ways to achieve overlap in the cortical representation of

sensory stimuli could be to use small changes in properties of the stimuli (e.g.,

direction of motion of moving dots), or more generally via image morphing al-

gorithms. This might be especially useful in early sensory cortices where popu-

lation codes based on a weighted average of the tuning of the activated neurons

is usually found for some encoded variables (e.g., direction of motion or ori-

entation of lines) (Georgopoulos, Schwartz, and Kettner, 1986; Pouget, Dayan,

and Zemel, 2000; Purushothaman and Bradley, 2005; Bednar and Miikkulainen,

2000; Spigler, 2014).

In conclusion, this study has demonstrated how the effects of interference in

neural dynamics, such as repetition suppression, and higher level cognitive pro-

cesses, such as perception and memory, can be investigated using stimuli that

are thought to produce overlap in their patterns of cortical activity. While the re-

sults of the functional neuroimaging experiment presented here were not found

to provide conclusive evidence for the inhibitory sharpening theory (Spigler and

Wilson, 2017), possibly due to small effect sizes and a need for a larger amount

of data, interesting trends were observed. These new data, in the context of the

various neuroimaging studies surveyed in this discussion, suggest that further

investigation may allow the different predictions of neural fatigue, sharpening

and inhibitory sharpening theories to be tested.
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Chapter 6

Discussion and conclusion

6.1 General discussion

The principal aim of this thesis was to work towards a complete theory of how

the human brain builds and maintains representations of the world. Specifically,

the focus of this work was on the role of lateral cortical interactions in shaping

cortical responses to perceptual stimuli on a timescale between the short-term

dynamics associated with perception and the longer-term dynamics associated

with the longer-term development of cortical maps.

Lateral connectivity between cortical minicolumns is a main feature in the

mammalian neocortex. Lateral interactions mediated by this dynamic pattern

of connectivity subserve important functions in cortical processing, as we have

reviewed in Chapters 1 and 2. Further, previous results (Bednar and Miikku-

lainen, 2000; Spigler, 2014) suggest that important aspects of the cortical repre-

sentation of sensory stimuli in the cortex are encoded in the synaptic strengths

of such lateral interactions. In this thesis, we explored whether a neurobiologi-

cally plausible computational model of cortical self-organisation could be used

to investigate how synaptic plasticity and adaptation in lateral cortical interac-

tions modifies the structure of pre-existing cortical representations and how it

affects their decoding.
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To this end, we started by using the L-model (Stevens et al., 2013), build-

ing upon an established program of existing computational neuroscience re-

search. We first designed and run a protocol for computer simulations using

the L-model to investigate the role of plastic changes in lateral interactions in

the cortical representation of stimuli, and we decided to focus on the medium-

term dynamics of the phenomenon of repetition suppression as a measure of

their effect. This investigation resulted in the ‘inhibitory sharpening’ theory that

is capable of explaining dynamics of repetition suppression by an increase in

the strength of the inhibitory interactions between cortical units co-active dur-

ing the presentation of the same stimulus due to Hebbian learning. The theory

was then used to produce the novel prediction that repetition suppression for

an adapter object can be disrupted (i.e., the magnitude of suppression can be

reduced) by intervening exposure to objects that produce activity that overlaps

with that elicited by the adapter, its cortical representation.

While the L-model was originally developed to model experimental data

from early sensory areas, it is here applied to higher cortical areas to model com-

plex cortical representations of sensory stimuli. The choice is justified by simi-

larities in their neural circuits (e.g., the presence of intra-area lateral inhibition)

and representation of features (e.g., cortical maps, population coding, etc. . . ).

However, while the main assumptions of the L-model may hold for higher sen-

sory cortical areas, further experimental evidence will be required to properly

verify the validity of the hypothesis.

It was next decided to test the predictions of the inhibitory sharpening theory

by taking two approaches, a neuroimaging experiment to measure the actual

magnitude of repetition suppression in a protocol compatible with that used in

the simulations, and a behavioural experiment to achieve both a separate test of

the same predictions and to explore whether the predicted interference between

stimuli that are hypothesized to produce overlapping patterns of cortical activity

can affect perception and behavior.
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Specifically, the behavioural experiment was designed to investigate how

the perception of objects can be affected by the interference due to stimuli whose

cortical representation is suspected to be overlapping with theirs, and at the

same time to further test the predictions of the inhibitory sharpening theory in

the cognitive domain. The results showed a significant effect of partial forget-

ting of previously learnt stimuli in such a protocol, measured as a significant

decrease in their recognition accuracy and an increase in the reaction time to

recognize them. The results from the control group further showed that if the

intervening stimuli used are not designed to produce disruption, human par-

ticipants are capable of learning to recognize the full set of stimuli used in the

experiments, showing that the decrease in accuracy that was found was not due

to an increase in the complexity of the task.

Finally, the neuroimaging experiment was designed and run to test the pre-

dictions of the inhibitory sharpening theory directly by measuring the mag-

nitude of repetition suppression in a protocol inspired to the one used in the

computer simulations, with the objective of measuring the possible predicted

decrease in the magnitude of suppression due to disruptive stimuli. The experi-

ment used a sequence of faces grouped in triplets where the same adapter stim-

ulus was repeated in the first and third position and the composition of the mid-

dle stimulus determined the three trial conditions (Same, Different and Half).

The magnitude of repetition suppression to the adapter stimulus would then be

different in the three conditions as predicted by different theories. Figure 5.1

was used to highlight three possible outcomes. According to the fatigue theory

of repetition suppression, the magnitude of suppression in the Half condition is

predicted to be higher than in the Different condition, as the neurons shared in

the representation of the adapter and the disruptive stimuli undergo continued

adaptation throughout the trial. On the contrary, the inhibitory sharpening theory

predicts a decrease in suppression as per the dynamics discussed in Chapter 3.

Finally, it could have been possible that no effect of interaction existed, and that
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thus the magnitude of suppression would be identical in the Different and Half

conditions. It is still to be noted, however, that each of the three outcomes is

compatible with a number of theories, and the results of the experiment would

thus only provide a coarse discrimination between different sets of competing

theories. All the cortical areas that were analysed (bilateral FFA and OFA areas)

showed a clear trend in agreement with the predictions of the inhibitory sharp-

ening theory, although the trend did not reach statistical significance in any area.

However, it may be possible that the effect size is small compared to the vari-

ance we found in the data, so the lack of statistical significance may be due to

a too limited amount of data. To further support this conclusion, we note that

previous studies (Li, Miller, and Desimone, 1993; Sayres and Grill-Spector, 2006)

showed that the difference between the Same and Different conditions should

be significant, although small in magnitude, as the Same condition corresponds

to two repetitions of the adapter versus a single repetition in the Different condi-

tion. This difference was however not found to be statistically significant in the

experiment presented here, suggesting that significant effects may still be hid-

den by the large variance in the data due to a too limited number of participants

in the study. Future experiments with a larger number of participants will be re-

quired to draw stronger conclusions. In any case, the trend that was found in the

data seems to disagree with the fatigue theory, that predicts opposite dynamics.

In the next sections of this chapter we will discuss some general themes of

interest related to the present work.

6.2 Parts-based population coding

As we reviewed in Chapter 2, population coding can be used to represent sen-

sory stimuli or perceptual variables (e.g., orientation of a line or colour of a

patch) as a distributed pattern of activity across multiple neurons. The popula-

tion codes that we explored in this thesis can be decoded as a linear combination
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of the preferred features of the active neurons, weighted by their activations. For

example, population activity in the cat motor cortex has been found to represent

the 3D location of the paw as a vector sum of the paw locations preferred by the

individual active neurons (Ethier et al., 2006). A similar type of distributed rep-

resentation has been found to encode complex shapes in primate visual area V4

(Pasupathy and Connor, 2002), and to encode objects as a combination of sim-

pler features and smaller parts in primate temporal cortex (Wachsmuth, Oram,

and Perrett, 1994; Tsunoda et al., 2001).

In Chapters 2 and 3 we discussed how the L-model can support both dis-

tributed and localist representations, to different degrees depending on the strength

of the inhibitory connections between the model units. Indeed, different bal-

ances between afferent and excitatory input on one hand, and lateral inhibition

on the other, change the equilibrium to which the network settles after exposure

to a new stimulus. In this thesis we have shown how the L-model in particular

can produce an approximate parts-based code of stimuli as in primate area V4

(Pasupathy and Connor, 2002) and inferotemporal cortex (Wachsmuth, Oram,

and Perrett, 1994; Tsunoda et al., 2001), while previous work has shown how its

intrinsic population code could be decoded to read out perceptual information

such as the perceived orientation of gratings (Bednar and Miikkulainen, 2000)

and perceived colour (Spigler, 2014).

Another interesting way to produce parts-based representations that was

explored early in the stages of this work is to compute a Non-Negative Least

Squares (NNLS) fit of the input stimulus as a linear combination of the afferent

weights of the cortical units in the network weighted by non-negative mixing

coefficients. The weights of the networks could then be updated by Hebbian

Learning. It is interesting that this approach still relies on implicit competition

between the model units, as the optimal combination of units is computed out of

the many possible ones. A more complete description of the preliminary experi-

ments using NNLS are reported in Appendix C. Future work should investigate



92 Chapter 6. Discussion and conclusion

the relation between the two approaches, and how the L-model or other models

of cortical dynamics may approximate aspects of the NNLS optimization prob-

lem.

6.3 Bridging mechanistic models of cortical dynamics with

high-level cognition

An interesting result of the work in this thesis is the connection between low-

level modeling of cortical dynamics and behaviour that depends on high-level

cognition such as perception and memory. The link is made possible by the

use of patterns of cortical activity as an intermediate stage connecting the two

domains. In particular, different types of cortical models may be used to predict

the organization of distributed representations of stimuli based on a population

code hypothesized to be used in the specific cortical area of interest. This was

explored in Chapters 2 and 3, setting the bases by reviewing and modifying the

L-model of cortical self-organization which is capable of producing a mixture

of distributed and localist cortical representations similar to those observed in

the mammalian sensory cortices. Chapter 4 then linked an hypothesized similar

parts-based population code to perception and behaviour.

As was done in Chapter 4, the approach explored here can be used in com-

plex protocols by further predicting changes in the cortical representation of

stimuli due to neural plasticity and adaptation. This was explored in this thesis

to explain perceptual changes due to interference from stimuli that produced

overlapping patterns of activation. Previous work, however, had already taken

advantage of similar ideas to explain the changes in perception observed in

the tilt aftereffect (Bednar and Miikkulainen, 2000) and the McCollough effect

(Spigler, 2014). In both cases of this thesis and previous work, the cortical repre-

sentations produced by the model are used as an intermediate bridge between

cortical dynamics and cognition.
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Finally, a similar approach was recently used to explain the dynamics under-

lying visual abnormalities in schizophrenia (Silverstein, Demmin, and Bednar,

2017), thus bridging the low-level dynamics produced by a mechanistic model

of cortical function with cognitive phenomena. However, contrary to the the

work presented in this thesis, the recent work explored the level of efferent ac-

tivity in parts of the models and a change in the model parameters to explain

the differences between healthy and clinical data, rather than investigating the

changes in the generated representation patterns.

6.4 Effect of cortical overlap in cognition

In this thesis we have investigated the effect of cortical overlap between differ-

ent stimuli both directly with a neuroimaging experiment (Chapter 5) and indi-

rectly in a set of behavioural experiments (Chapter 4). Here we argue that this

idea can be further explored in relation to previous studies in the literature that

have produced results that are compatible with the account of cortical overlap

given in this thesis, both in neuroimaging experiments and in cognitive studies

of perception and memory.

A previous study by Webster and colleagues (Webster et al., 2004) showed

that watching a sequence of faces can strongly affect subsequent perceptual

judgements on new faces, dynamically changing the boundary between cate-

gories such as perceived gender, ethnicity and facial expressions. For example,

watching a sequence of male faces was found to shift the perceptual bound-

ary on gender such that a subsequent test neutral face was more likely to be

perceived as being female. This effect may be explained in the context of the

present study as adaptation of neurons selective to features and parts of faces

that thus modify the population decoded perceptual judgement on subsequent

faces that rely on such shared features and thus shared neurons in the same cor-

tical representation.
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The potential interference between overlapping cortical patterns may also

have been observed in working memory. Cohen and colleagues (Cohen et al.,

2014) presented a theory based on experimental data for which the processing

capacity of multiple visual objects decreases with the amount of overlap be-

tween their neural response patterns, although differently from here the degree

of overlap was measured directly from the fMRI signal and considered across

multiple visual cortical areas rather than within a single area. This result may

be further linked to a set of studies that showed that visual masking is more

effective when the category of the mask matches the one of the masked stimu-

lus (e.g., masking faces with faces rather than random noise) (Aguado, Serrano

Pedraza, and García Gutiérrez, 2014), which is more likely to activate shared

sub-sets of neurons, thus producing a higher degree of interference. The effect

was then correlated to direct measurements of overlap in the BOLD fMRI signal

using a larger number of visual categories (Cohen et al., 2015). A similar type of

interference in visual masking was also indirectly explored in the “neural com-

petition” theory by Keysers (Keysers and Perrett, 2002), which is based on a

competition between co-existing neural representations within the same cortical

areas. Competition between patterns of neural activity corresponding to differ-

ent stimuli may be also implicated in adaptive forgetting due to competition

between memory traces (Wimber et al., 2015).

The effect of interference due to overlapping distributed representations was

also proposed to address the plasticity/stability dilemma in artificial and bio-

logical neural networks, and to explain the problem of catastrophic forgetting in

connectionist models (French, 1992). It is interesting that the results from Chap-

ter 4 match previous data in this context very well.

Finally, the results presented in Chapter 4 can be used to potentially link a

mechanistic description of neural dynamics with confusion between perceptu-

ally similar stimuli, by assuming a linear decoding of the patterns of cortical ac-

tivity by downstream neurons (for example, (Pitkow et al., 2015)). In this regard,
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it is interesting that the results from Chapter 3 predicted a tendency for the corti-

cal representation of stimuli to change from an initial broadly distributed repre-

sentation to a more localist one during the process of familiarization, which has

the effect of reducing the overlap between pairs of stimuli and thus makes them

more easy to discriminate with linear template matching. This phenomenon

could thus prove particularly useful for cortical computation.

6.5 How can plasticity of lateral interactions affect cortical

representation?

In conclusion, this thesis investigated the role of plasticity of lateral interactions

in shaping cortical responses to perceptual stimuli on a timescale between the

short-term dynamics associated with perception and the longer-term dynamics

associated with cortical self-organisation. In particular, we have shown how the

plasticity-dependent changes in the cortical representation of sensory stimuli

is compatible with the observed phenomenon of repetition suppression and to

behaviour.

The theory developed in this thesis along with the results from a set of ex-

periments, both behavioural and by means of neuroimaging, was finally used

to perform a preliminary investigation of the effect of interference due to stim-

uli that are designed to produce overlapping cortical representations, that is to

activate a large number of shared neurons.

6.6 Future Work

As was discussed in Chapter 5, it is possible that the lack of statistical signifi-

cance found in the neuroimaging experiment was due to a small effect size that

was could not be captured with the number of participants that was recruited
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(13 volunteers). Future work should try to extend the experiment or use simi-

lar designs in order to further test the inhibitory sharpening theory and better

isolate the specific contribution of plasticity in lateral cortical interactions.

Also, future work is required to isolate the specific contribution of lateral in-

hibitory plasticity on repetition suppression and on the cortical representation

of stimuli. Single-neuron studies may be necessary. Optical imaging experi-

ments may prove useul as well; for example, a setup similar to that used by

Tsunoda et al., (2001) may be used to test new predictions from the L-model on

the familiarization-induced dynamic changes to the activity blobs associated to

the presentation of sensory stimuli.

We expect that studying the effect of overlapping cortical representations,

for example using Multi-Voxel Pattern Analysis (MVPA) and machine learning,

will prove fruitful to probe cortical dynamics and to bridge them with high-level

cognition and behaviour.

At the same time, it will be useful to further develop the models of cortical

development presented in this thesis in order to generate and test novel pre-

dictions about perception. For example, it would be interesting to integrate the

L-model with to support some degrees of supervised learning, which would

allow a direct modelling of the data from Chapter 4.

Indeed, we suggest that this approach will help bridge the gap in our under-

standing of how we represent the world, between psychological descriptions of

perception and neurobiological mechanisms of cortical dynamics on develop-

mental and perceptual timescales.
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Parameters of the simulations

The table below shows the parameters used for the simulations in Chapter 3.

The learning rates represent the total amount of change across all the model

units. The learning rate of each unit is computed as ε = εp
Nunits

, where Nunits is

the number of units in the network (Nunits = 48 · 48).

Parameter Value

# Units 48 · 48

Afferent Strength (αA) 2.2

Excitatory Strength (αE) 1.2

Inhibitory Strength (αI ) 2.3

Afferent Learning Rate (εA) 0.1

Excitatory Learning Rate (εE) 0.0

Inhibitory Learning Rate (εI ) 0.3

Parameters used to pre-train the models.
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Parameter Value

Afferent Strength (αA) 1.5

Excitatory Strength (αE) 1.2

Inhibitory Strength (αI ) 2.3

Homeostatic learning rate (λ) 0.01

Homeostatic smoothing (β) 0.991

Homeostatic initial average (ηj(0)) 0.15

Homeostatic target activity (µ) 0.024



99

Appendix B

Supplementary Results for the

neuroimaging investigation

FIGURE B.1: Single voxel analysis: face localizer. The figure shows single-voxel results
of the main effect of first presentations of faces across all the conditions at a threshold of

p < 0.001 with Family-Wise Error (FWE) correction and clusters larger than 20 voxels.
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FIGURE B.2: Beta values for each first face. Beta values for each first presentation of faces in
each condition and ROI, averaged across all the participants. Bars show the standard error.
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FIGURE B.3: Beta values for each regressor and ROI. Beta values for each regressor (Con-
dition x Repetition; conditions being Same, Different and Half, and repetitions being First,
Immediate and Delayed) in each ROI, averaged across all the participants. Bars show the

standard error.
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Appendix C

Preliminary experiments with

Non-Negative Least Squares

(NNLS)

The simulations presented in this thesis involved the high-level encoding of sen-

sory stimuli as a parts-based population code compatible with that suggest to be

used in primate area V4 (Pasupathy and Connor, 2002) and inferotemporal cor-

tex (Wachsmuth, Oram, and Perrett, 1994; Tsunoda et al., 2001). In particular,

the simulations presented in Chapter 4 used a fixed high-level encoding of stim-

uli as a collection of parts, specifically as binary vectors x ∈ RD, representing

the presence or absence of D possible object part that could be observed. For

example, this encoding could represent an object A with the first 3 parts present

out of 5 possible ones as

xA = (1, 1, 1, 0, 0)T

Part of the work of this thesis showed that repetition suppression dynam-

ics can reflect a re-organisation of cortical activation from a initially distributed

representations to more localist ones, during the process of familiarization (see

Chapter 3). Preliminary work, however, used a mathematically more accurate

method for estimating the activation of the model units, at the expense of a
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lower biological plausibility and higher computational cost. In this regard, the

L-model may be seen as approximating a similar distributed population code in

a biologically realistic way.

The method described here relies on the Non-Negative Least Squares opti-

mization (NNLS) (Chen and Plemmons, 2010) to compute the target represen-

tation of input stimuli as a vector of non-negative mixing coefficients such that

the input stimulus can be reconstructed as a linear combination of the template

weights of the cortical units in the model, weighted by their corresponding acti-

vation.

We next present a simple model of a high-level sensory cortex based on these

ideas, and we show how it can produce dynamics of repetition suppression de-

pendent only on the specific type of neural coding used, together with simple

Hebbian learning. The model is based on a Kohonen Self-Organising Map with

N units. The weights of the map’s units, that is their projective fields or tem-

plates, can be represented as D-dimensional columns wi of a matrix C ∈ RD×N .

However, contrary to regular Kohonen SOMs, the model activation α(t) ∈

RN in response to each new stimulus x(t) is produced by computing a population-

coded representation of the stimulus as a non-negative linear combination of the

templates of the units in the model, solving the Non-Negative Least Squares op-

timization

α̃(t) = argmin
α≥0

‖Cα− x(t)‖2

where α ≥ 0 constrains each component of α to be non-negative, and ‖ · ‖2

denotes the Euclidean norm.

After the response to a stimulus has been computed, the weights are updated

according to the traditional Kohonen SOM learning rule, by picking the most

active unit a = argmax α̃ and updating all the model units in its neighborhood

as



Appendix C. Preliminary experiments with Non-Negative Least Squares

(NNLS)
105

wi(t+ 1) = wi(t) + h(a, i, t) · η(t) · (x(t)−wi(t))

where η(t) is the learning rate and h(a, i, t) is a Gaussian neighborhood func-

tion that depends on the distance between units a and i on the 2D model map.

We finally measure the model dynamics, and in particular the transition from

population-coded distributed representation to localist ones tracking stimulus

familiarization (as in Chapter 3), by computing the sum of the activity of all the

model units

TotalActivation =
∑
i

αi

Figure C.1 shows the amount of total activation in the model following the

repeated presentation of a single adapter stimulus, in a protocol compatible to

that used in Chapter 3. The results reported were computed using a SOM map

with N = 20 × 20 = 400 units and input objects composed of D = 5 possible

parts, and an adapter stimulus xadapter = (1, 0, 1, 0, 1). The weights of the model

units were initialized to random values (uniform in [0, 1]).

The results show a reduction in the total amount of activation in the model

due to the strongest units becoming strongly tuned to the adapter stimulus

via Hebbian learning and competitive dynamics implicit in the activation com-

puted by the NNLS optimization. Specifically, single units highly tuned to the

adapter become capable of reconstructing the stimulus without requiring the co-

activation of other complementary units, in a ‘grand-mother neuron’-like fash-

ion.
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FIGURE C.1: Results of the NNLS-based Kohonen SOM simulation. Results of the NNLS-
based Kohonen SOM simulation, showing the model’s total activation during repeated expo-

sure to a single adapter stimulus aadapter = (1, 0, 1, 0, 1).
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