
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Denoising Autoencoders for Overgeneralization
in Neural Networks

Giacomo Spigler, Member, IEEE

Abstract—Despite recent developments that allowed neural networks to achieve impressive performance on a variety of applications,
these models are intrinsically affected by the problem of overgeneralization, due to their partitioning of the full input space into the fixed
set of target classes used during training. Thus it is possible for novel inputs belonging to categories unknown during training or even
completely unrecognizable to humans to fool the system into classifying them as one of the known classes, even with a high degree of
confidence. This problem can lead to security problems in critical applications, and is closely linked to open set recognition and 1-class
recognition. This paper presents a novel way to compute a confidence score using the reconstruction error of denoising autoencoders
and shows how it can correctly identify the regions of the input space close to the training distribution. The proposed solution is tested on
benchmarks of ‘fooling’, open set recognition and 1-class recognition constructed from the MNIST and Fashion-MNIST datasets.

Index Terms—overgeneralization, fooling, autoencoder, open set recognition, open world recognition, 1-class recognition, confidence
score, neural networks

F

1 INTRODUCTION

Discriminative models in machine learning, like neural
networks, have achieved impressive performance in a variety
of applications. Models in this class, however, suffer from
the problem of overgeneralization, whereby the whole input
space is partitioned between the set of target classes specified
during training, and generally lack the possibility to reject a
novel sample as not belonging to any of those.

A main issue with overgeneralization is in the context of
open set recognition [22] and open world recognition [5], where
only a limited number of classes is encountered during
training while testing is performed on a larger set that
includes a potentially very large number of unknown classes
that have never been observed before. An example is shown
in Figure 1 where a linear classifier is trained to discriminate
between handwritten digits ‘0’ and ‘6’. As digit ‘9’ is not
present in the training set, it is here wrongly classified as
‘6’. In general, instances of classes that are not present in the
training set will fall into one of the partitions of the input
space learnt by the classifier. The problem becomes worse
in real world applications where it may be extremely hard
to know in advance all the possible categories that can be
observed.

Further, the region of meaningful samples in the input
space is usually small compared to the whole space. This can
be easily grasped by randomly sampling a large number of
points from the input space, for example images at a certain
resolution, and observing that the chance of producing a
recognizable sample is negligible. Yet, discriminative models
may assign a high confidence score to such random images,
depending on the learnt partition of the input space. This
is indeed observed with fooling [16], for which it was

• G. Spigler is with the Biorobotics Institute of Scuola Superiore Sant’Anna,
Pisa, Italy.
E-mail: giacomo.spigler@santannapisa.it

fe
a

tu
re

 2

feature 1

fooling
unknown class

Fig. 1. A linear classifier is trained to recognize exclusively pictures
of digits ‘0’ and ‘6’. Digit ‘9’ was never observed during training, but in
this example it is wrongly classified as digit ‘6’. This is an example of
overgeneralization. A similar problem is ‘fooling’, whereby it is possible to
generate images that are unrecognizable to humans but are nonetheless
classified as one of the known classes with high confidence, for example
here the noise-looking picture in the bottom-left corner that is classified
as digit ‘0’.

shown to be possible to generate input samples that are
unrecognizable to humans but get classified as a specific
target class with high confidence (see example in Figure 1).
Fooling in particular may lead to security problems in critical
applications.

As suggested in [16], these problems may be mitigated or
solved by using generative models, that rather than learning
the posterior of the class label P (y|X) directly, learn the joint
distribution P (y,X) from which P (X) can be computed.
Modeling the distribution of the data would then give a
model the capability to identify input samples as belonging
to known classes, and to reject those that are believed to



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

belong to unknown ones. Apart from mitigating the problem
of overgeneralization, modeling the distribution of the data
would also be useful for applications in novelty and outlier
detection [14] and incremental learning [5], broadening the
range of applications the same model could be used in.

Estimating the marginal probability P (X) is, however,
not trivial. Luckily, computing the full distribution may
not be necessary. The results in this work suggest that
identification of high-density regions close to the local
maxima of the data distribution may be sufficient to correctly
identify which samples belong to the distribution and which
ones are to be rejected. Specifically, it is possible to identify
and classify the critical points of the data distribution by
exploiting recent work that has shown that in denoising
[27] and contractive [21] autoencoders, the reconstruction
error tends to approximate the gradient of the log-density.
A measure of a confidence score can then be computed as a
function of this gradient.

Here, a set of experiments is presented to compare the
empirical performance of the proposed model with baselines
and with the COOL (Competitive Overcomplete Output
Layer) [11] model that has been recently applied to the
problem of fooling.

2 OVERVIEW OF PREVIOUS WORK

The simplest way to limit overgeneralization in a given
classifier is to set a threshold on the predicted outputs and
rejecting any sample below its value (for example [10], [20]).
The output of the model is thus treated as an estimate of the
confidence score of the classifier. This approach, however,
was shown to be sensitive to the problem of fooling [16].
Alternatively, a confidence score may be computed based on
the k-Nearest-Neighbor algorithm (e.g., [8], [9], [30]) or the k-
Means algorithm (e.g., [2], [15]), as a function of the distance
of novel samples from the stored templates or centroids.

Another way to mitigate the problem is to use a training
set of positive samples complemented with a set of negative
samples that includes instances belonging to a variety of
‘other’ classes (e.g., [4]). This approach however does not
completely solve the problem, and it is usually affected by an
unbalanced training set due to the generally larger amount
of negatives required [18]. As the potential amount of
negatives can be arbitrarily large, a further problem consists
in gathering an amount of data sufficient to approximate their
actual distribution, which is made even worse by the fact that
the full set of negative categories may not be known when
training the system. For example, in the context of object
recognition in vision, high-resolution images may represent
any possible image class, the majority of which is likely
not known during training. The use of negative training
instances may nonetheless mitigate the effect of categories
that are known to be potentially observed by the system.

The problem of overgeneralization is further present
in the context of ‘open set recognition’, that was formally
defined by Scheirer and colleagues [22]. In this framework,
it is assumed that a classifier is trained on a set of ‘known’
classes and potentially on a set of ‘known unknown’ ones
(e.g., negative samples). Testing, however, is performed on
a larger set of samples that include ‘unknown unknown’
classes that are never seen during training. Models developed

to address the problem of open set recognition focus on the
problem of ‘unknown unknown’ classes [23]. The seminal
paper that gave the first formal definition of the problem
proposed the 1-vs-Set Machine algorithm as an extension
to SVM that is designed to learn an envelope around the
training data using two parallel hyperplanes, with the inner
one separating the data from the origin, in feature space [22].
Scheirer and colleagues then proposed the Weibull-calibrated
SVM (W-SVM) algorithm to address multi-class open set
recognition [23]. Another interesting approach was recently
applied to deep neural networks with the OpenMax model
[6], that works by modeling the class-specific distribution
of the activation vectors in the top hidden layer of a neural
network, and using the information to recognize outliers.

Related to the problem of open set recognition is that
of ‘open world recognition’, in which novel classes first
have to be detected and then learnt incrementally [5]. This
can be seen as an extension to open set recognition in
which the ‘unknown unknown’ classes are discovered over
time, becoming ‘novel unknowns’. The new classes are then
labelled, potentially in an unsupervised way, and become
’known’. The authors proposed the Nearest Non-Outlier
(NNO) algorithm to address the problem.

A special case of open set recognition is 1-class recog-
nition, in which training is performed on samples from a
single class, with or without negative samples. The 1-Class
SVM algorithm was proposed to address this problem [24],
by fitting a hyperplane that separates all the data points from
the origin, in feature space, maximizing its distance from
the origin. The algorithm has been applied in novelty and
outlier detection [25]. Variants of the algorithm like Support
Vector Data Description (SVDD) have also been used to
learn an envelope around points in the dataset [26]. Other
systems have tried to estimate the boundaries of the data by
computing the region of minimum volume in input space
containing a certain probability mass [17].

For a more complete overview of methods proposed in
the specific case of outlier detection we suggest the review
by (Domingues et al., 2018) [8].

Finally, a specific sub-problem of overgeneralization is
‘fooling’ [16]. The “Competitive Overcomplete Output Layer”
(COOL) model [11] was recently proposed to mitigate the
problem of fooling. COOL works by replacing the final
output layer of a neural network with a special COOL layer,
constructed by replacing each output unit with ω ones (the
degree of overcompleteness). The ω output units for each
target class are then made to compete for activation by means
of a softmax activation that forces them to learn to recognize
different parts of the input space, overlapping only within
the region of support of the data generating distribution. The
network can then compute a confidence score as the product
of the activation of all the units belonging to the same target
class, that is high for inputs on which a large number of units
agrees on, and low in regions far from the data distribution,
where only few output units are active.

3 PROPOSED SOLUTION

The solution presented here is based on a novel measure
of confidence in the correct identification of data points
as belonging to the training distribution, or their rejection.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Ideally, such a confidence score would be a function of the
data probability p(x). Computing the full distribution may
however not be necessary. In particular, we suggest that for
most applications, especially in computer vision, the problem
can be simplified with the identification of points belonging
to the data manifold as points that are close to local maxima
of the data generating distribution, as follows.

It has been recently shown that trained denoising [27]
and contractive [21] autoencoders implicitly learn features
of the underlying data distribution [3], [7], specifically that
their reconstruction error approximates the gradient of its
log-density

∂ log p(x)

∂x
∝ r(x)− x (1)

for small corruption noise (σ → 0). r(x) = Dec(Enc(x))
is the reconstructed input. Larger noise is however found to
work best in practice. The result has been proven to hold for
any type of input (continuous or discrete), any noise process
and any reconstruction loss, as long as it is compatible with
a log-likelihood interpretation [7]. A similar interpretation
suggested that the reconstruction error of regularized au-
toencoders can be used to define an energy surface that
is trained to take small values on points belonging to the
training distribution and higher values everywhere else [29].

Thus, critical points of the data distribution correspond
to points with small gradient of the log-density, that is
small reconstruction error (Equation 1). Those are indeed
points that the network can reconstruct well, and that it has
thus hopefully experienced during training or has managed
to generalize to well. Conversely, samples from the data
distribution, that are trained to achieve small reconstruction
error, are characterized by small gradient of the log-density
of the data distribution, and are thus extrema points, in
agreement with the initial hypothesis that data samples
could be identified by their proximity to local maxima of the
distribution. A confidence score can thus be designed that
takes high values for points on the data manifold, that is
points near the local maxima of the log-density of the data
distribution, and small values everywhere else.

We note however that this approach cannot distinguish
between local minima, maxima or saddle points (Figure
2 shows such an example), and may thus assign a high
confidence score to a small set of points not belonging to
the target distribution. Here the problem is addressed by
scaling the computed confidence by a function Γ(x) that
favours small or negative curvature of the log-density of the
data distribution, which can in turn be computed from the
diagonal of the Hessian, estimated from the Jacobian of the
reconstruction function as shown in [3]

∂2 log p(x)

∂x2
∝ ∂r(x)

∂x
− I (2)

A variety of functions may be defined with the desired
characteristics, exploiting Equations 1 and 2. One possible
way, that we will use throughout this paper, is to compute
the confidence score c̃(x) as

c̃(x) = exp
(
− α
D
‖r(x)− x‖2

)
Γ(x) (3)

Γ(x) =

{
1 if γ(x) ≤ 0

exp(−βγ(x)) if γ(x) > 0
(4)

γ(x) =
1

D

∑
i

(
∂ri(x)

∂xi
− 1

)
(5)

where D is the dimensionality of the inputs x =
(x1, x2, . . . , xD), α a parameter that controls the sensitivity
of the function to outliers and β a parameter that controls the
sensitivity to γ(x), which is proportional to the average of
the diagonal elements of the Hessian of the log-density at x
(from Equation 2). High values of α yield stricter confidence
scores, at the expense of potentially discarding valid data.
Low values of α, however, may be susceptible to a degree of
overgeneralization.

The first component of c̃(x) identifies the extrema points
of the log-density of the data (from Equation 1), while Γ(x)
is used to limit high values of the confidence scores to the
maxima only (i.e., to points predicted to lie near the data
manifold). Note that Equations 3,4 and 5 do not require
modifications to the autoencoder, but only need access to the
learnt reconstruction function r(x).

A classifier can finally be modified by scaling its predicted
output probabilities y by c̃(x) computed using a denoising
autoencoder trained together with the classifier

ỹ = c̃(x)y (6)

If the outputs of the classifier are normalized, for example
using a softmax output, this can be seen as introducing an
implicit ‘reject/other’ class with value 1− c̃(x).

In the experiments presented here, the classifier is con-
structed as a fully connected softmax layer attached on top
of the top hidden layer of an autoencoder with symmetric
weights (i.e., attached to the output of the encoder), in order
to keep the number of weights similar (minus the bias terms
of the decoder) to an equivalent feed-forward benchmark
model, identical except for its lack of the decoder. In general,
keeping the autoencoder separate from the classifier or
connecting the two in more complex ways will work, too,
as well as using a classifier that is not a neural network. In
case the autoencoder and the classifier are kept separate,
the autoencoder is only used to infer information about
the data distribution. Pairing the systems together, however,
might provide advantages outside the scope of the present
work, like enabling a degree of semi-supervised learning.
The autoencoder may also be further improved by replacing
it with the discriminator of an EBGAN [29] to potentially
learn a better model of the data.

4 EXPERIMENTS

4.1 2D example

The model was first tested on a 2D classification task to
visualize its capacity to learn the support region of the
input space of each training class. Three target distributions
were defined as uniform rings with thickness of 0.1, inner
radius of 0.6 and centers (−1, 1), (1, 1) and (1,−1). The
training distributions are shown in Figure 2A. Training was
performed with minibatches of size 64 using the Adam



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

1

0.5

0

A B

C D

Fig. 2. The system presented here is trained to classify points sampled
from three uniform ring distributions. A. 1000 data points are sampled
from each of the target distributions. B. Labeling y of each point in the
input space without scaling of the classifier’s output by the confidence
score. C. Labeling ỹ of each point in the in=put space scaled by
the computed confidence score. Regions in white are assigned low
confidence scores. D. Top: confidence score without Γ(x). Bottom:
estimate of the curvature of the log-distribution of the data (Γ(x)). The
confidence score c̃(x) is the product of the two functions. The panel in B
is the product of the classifier’s output (C) and the confidence score.

optimizer [12] for a total of 50000 update steps. As shown
in Figure 2, the model learned to correctly identify the
support region of the target distributions. On the contrary,
the uncorrected classifier partitioned the whole space into
three regions, incorrectly labeling most points. The confi-
dence score computed by the model presented here helps
the system to prevent overgeneralization by limiting the
decisions of the classifier to points likely to belong to one of
the target distributions.

4.2 Fooling
The model presented in this paper was next tested on a
benchmark of fooling on the MNIST [13] and Fashion-MNIST
[28] datasets similar to the one proposed in [11]. However,
contrary to the previous work, the classification accuracy
of the models is reported as a ‘thresholded classification
accuracy’, which considers the classification of test samples
with correctly predicted labels as correct only if the corre-
sponding scaled output ỹ is above the same threshold used
to consider a fooling instance as valid. This metric should
indeed be reported alongside the fooling rate for each model,
as otherwise a model that trivially limits the confidence
scores of a network to a fixed value lower than the threshold
used to consider fooling attempts to be valid would by
definition never be fooled. The same model would however
never classify any valid sample above that same threshold.
This metric thus proves useful to compare different models
with varying degrees of sensitivity to overgeneralization.

The fooling test was performed by trying to fool a
target network to classify an input that is unrecognizable
to humans into each target class (digits 0 to 9). The fooling

TABLE 1
MNIST fooling results

Model Accuracy Fooling Rate (Avg Steps)

0% 90% 99% 90% 99%

CNN 99.35% 99.23% 99% 100% (63.5) 99% (187.1)

COOL 99.33% 98.1% 93.54% 34.5% (238.8) 4.5% (313.4)

dAE sym 98.98% 98.11% 96.8% 0% (-) 0% (-)

dAE asym 99.14% 98.41% 97.63% 0% (-) 0% (-)

instances were generated using a Fooling Generator Network
(FGN) consisting of a single layer perceptron with sigmoid
activation and an equal number of input and output units
(size of (28, 28) here). Most importantly, the FGN produces
samples with values bounded in (0, 1) without requiring an
explicit constraint. Fooling of each target digit was attempted
by stochastic gradient descent on the parameters of the FGN
to minimize the cross-entropy between the output of the
network to be fooled and the specific desired target output
class. Fooling of each digit was attempted for 20 trials with
different random inputs to the FGN, each trial consisting of
up to 10000 parameter updates, as described in [11].

In the first test we compared three models, a plain
Convolutional Neural Network (CNN), the same CNN with
a Competitive Overcomplete Output Layer (COOL) [11],
and a network based on the system described in Section
3, built on the same CNN as the other two models with
the addition of a decoder taking the activation of the top
hidden layer of the CNN as input, to compute the dAE-based
confidence score c̃(x). The denoising autoencoder (dAE) was
trained with corruption of the inputs by additive Gaussian
noise. All the models were trained for a fixed 100 epochs.
Fooling was attempted at two different thresholds, 90% and
99%, in contrast to the previous work that used only the
99% one [11]. Comparing the models at different thresholds
gives more information about their robustness and may
amplify their differences, thus improving the comparison.
Tables 1 and 2 report the results for the three models, with
the further splitting of the denoising autoencoder model in
two separate cases, using either a separate decoder (dAE
asym) or building the decoder as a symmetric transpose
of the encoder (dAE sym). Fooling was measured as the
proportion of trials (200 total, 20 repetitions of 10 digits)
that produced valid fooling samples within the maximum
number of updates. The average number of updates required
to fool each network is reported in parentheses. The full
set of parameters used in the simulations is reported in
Appendix b. The model presented here outperformed the
other two at both thresholds, while also retaining a high
thresholded classification accuracy, even at high thresholds.
As in the previous protocol [11], the cross-entropy loss used
to optimize the FGN was computed using the unscaled
output y of the network.

The symmetric and asymmetric autoencoders were both
found to achieve perfect fooling performance (0% fooling
rate) and similar accuracies on MNIST. As the asymmetric
autoencoder requires twice as many parameters, but does
not yield major improvements, the simpler symmetric model
was used for all the remaining experiments, so that the three
models had a similar number of parameters (1.31M for CNN



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

TABLE 2
Fashion-MNIST fooling results

Model Accuracy Fooling Rate (Avg Steps)

0% 90% 99% 90% 99%

CNN 91.65% 90.91% 89.27% 100% (113.0) 30.5% (902.0)

COOL 91.23% 87% 65.3% 0% (-) 0% (-)

dAE sym 91.59% 77.8% 64.87% 0% (-) 0% (-)

and dAE, 1.35M for COOL).
We further observed that the results in Table 1 were

different from those reported in [11]. Specifically, the fooling
rate of the COOL was found to be significantly lower than
that reported (47%), as well as the average number of
updates required to fool it (more than 5000). The major
contributor to this difference was found to be the use of
Rectified Linear Units (ReLUs) in the experiments reported
here, compared to sigmoid units in the original study. This
was shown in a separate set of simulations where all the
three models used sigmoid activations instead of ReLUs and
a fixed fooling threshold of 99%. In this case the thresholded
classification accuracy of the models was slightly higher
(98.39% for the plain CNN, 96.55% for COOL, and 96.58%
for dAE), but it was matched with a significant increase in
the fooling rate of the COOL model (95.5%(2203.9); plain
CNN 91%(519.2), dAE 0%). Other variations in the protocol
that could further account for the differences found could be
the different paradigm for training (100 fixed training epochs
versus early stopping on a maximum of 200 epochs) and a
slightly different network architecture, that in the present
work used a higher number of filters at each convolutional
layer.

Next, the effect of the learning rate used in the fooling
update steps was investigated by increasing it from the one
used in the previous study (η = 0.00001) to the one used to
train the models η = 0.001, expecting a higher fooling rate.
The threshold was set to 90%. Indeed, the plain CNN was
found to be fooled on 100% of the trials in just 2.66 updates,
while the dAE based model was still never fooled. COOL,
on the other hand, significantly decreased in performance,
with a fooling rate of 56.5% (878.3 average updates).

Finally, the COOL and dAE models were tested by
attempting to fool their confidence scores directly, rather
than their output classification scores, in contrast to [11] (i.e.,
using ỹ instead of y for the cross-entropy loss used to update
the FGN). A threshold of 99% was used. Interestingly, the
COOL model was never fooled, while the model described
here was fooled on 1% of the trials, although requiring a
large number of updates (5470.8 on average). Also, it was
found that while adding L2 regularization to the weights
of the dAE model led to a significantly higher fooling rate
(100% rate in 6500.3 average updates for λL2 = 10), the
generated samples actually resembled real digits closely, and
could thus not be considered examples of fooling. This shows
that the dAE model, when heavily regularized, is capable of
learning a tight boundary around the high density regions
of the data generating distribution, although at the cost of
reducing its thresholded accuracy (87.84% for λL2 = 10).
The set of generated samples is shown as Supplementary

CNN

COOL

dAE

0 1 2 3 4 5 6 7 8 9

never never

never never never never never never never never

Generated fooling samples - MNIST

Fig. 3. Visualization of a set of generated fooling samples from the
main results of Table 1 (MNIST). The samples from the plain CNN
and the COOL models were computed by trying to fool each system’s
output classification scores above a threshold of 90%. As fooling was
unsuccessful on the dAE model in this case, the results reported here
were taken from the simulations in which fooling was performed directly
on the output scaled by the confidence score (ỹ). Classes for which
fooling was never successful within the maximum number of fooling
iterations are marked as “never”.

Figure D for λL2 = {10, 100}.
An example of the generated fooling samples is reported

in Figure 3, showing instances from the main results of table
1 for the plain CNN and COOL, and for the experiment with
fooling the confidence scores directly for the dAE model.

4.3 Open Set Recognition

The three models that were tested on fooling, a plain CNN,
COOL [11] and the dAE model described in this paper were
next compared in the context of open set recognition.

Open set recognition was tested by building a set of
classification problems with varying degrees of openness
based on the MNIST and Fashion-MNIST datasets. Each
problem consisted in training a target model only on a
limited number of ‘known‘ training classes (digits) and
then testing it on the full test set of 10 digits, requiring the
model to be able to reject samples hypothesized to belong to
‘unknown’ classes. The degree of openness of each problem
was computed similarly to [22], as

openness = 1−
√
num training classes

num total classes

where num training classes is the number of ‘known’
classes seen during training and num total classes is 10
for both datasets. A high value of openness reflects a larger
number of unknown classes seen during testing than that of
classes experienced during training. The number of training
classes was varied from 1 to 10, reflecting the full range of
degrees of openness offered by the dataset.

For each fixed number of training classes used in training,
the models were trained for 10 repetitions on different
random subsets of the digits, to balance between easier and
harder problems depending on the specific digits used. The
same subsets of digits were used for all the three models.
Correct classification was computed as a correct identification
of the class label and a confidence score above a classification
threshold of 99%, while correct rejection was measured as
either assigning a low classification score (below 99%) or
classifying the input sample as any of the classes not seen
during training (for simplicity, the networks used a fixed
number of output units for all the problems, with the target
outputs corresponding to the ‘unknown’ classes always set



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

openness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
f-

m
e
a
s
u

re

Benchmark CNN

COOL

dAE

MNIST

Benchmark CNN

COOL

dAE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

openness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f-
m

e
a
s
u

re

Fashion-MNIST

Fig. 4. Comparison of the three models on a benchmark of open set
recognition. The F-measure was computed for each model on problems
created from the MNIST (left) and Fashion-MNIST (right) datasets by
only using a limited number of ‘known’ classes during training while
testing on the full test set (e.g., training on classes 0 and 3 but testing
on all classes [0, 9]), requiring the models to be able to reject samples
belonging to ‘unknown’ classes. Higher values for the openness of a
problem reflect a smaller number of classes used during training. The
curves are averaged across 10 runs using different sub-sets of digits.
Error bars denote standard deviation.

to zero). The models were trained for a fixed 100 epochs for
each task.

Figure 4 reports the results of the experiment. Like in the
previous published benchmarks on open set recognition [6],
[22], [23], the performance of the models for each degree of
openness (indexed by i) was computed as the F-measure, the
harmonic mean of the precision and recall scores, averaged
across all the repetitions for the same degree of openness.

Fi = 2× precisioni × recalli
precisioni + recalli

Results from a similar experiment with a lower threshold
of 90% are available as Supplementary Figure F.

4.4 1-Class Recognition
The limit of open set recognition in which a single training
class is observed during training, that is the problem of 1-
class recognition, was next explored, comparing the model
presented in this paper with COOL [11] and 1-Class SVM
[24].

A separate 1-class recognition problem was created from
the MNIST and Fashion-MNIST datasets for each target
class. For each problem the models were trained using only
samples from the selected class, while they were tested on
the full test set of 10 digits. No negative samples were used
during training. Each model was trained for 100 epochs on
each problem.

Figure 5 shows the results as a ROC curve averaged over
the curves computed for each of the 10 1-class recognition
problems. The dAE based model outperforms the other two,
with an Area Under the Curve (AUC) of 0.964, compared to
AUC = 0.952 of 1-Class SVM and AUC = 0.753 of COOL.

5 DISCUSSION

The confidence score that was introduced in this paper was
found to perform better than a set of competing models in
open set recognition and 1-class recognition. The system was
also found to be significantly more robust to the problem of

0 0.2 0.4 0.6 0.8 1

false positive rate

0

0.2

0.4

0.6

0.8

1

tr
u
e
 p

o
s
it

iv
e
 r

a
te

dAE (AUC=0.964)

1-Class SVM (AUC=0.952)

COOL (AUC=0.753)

MNIST

0 0.2 0.4 0.6 0.8 1

false positive rate

0

0.2

0.4

0.6

0.8

1

tr
u
e
 p

o
s
it

iv
e
 r

a
te

dAE (AUC=0.917)

1-Class SVM (AUC=0.918)

COOL (AUC=0.859)

Fashion-MNIST

Fig. 5. ROC curves averaged over 10 1-class recognition problems,
one for each class in MNIST (left) and Fashion-MNIST (right), for three
models, the dAE model described in this paper, 1-Class SVM [24] and
COOL [11].

fooling than the state of the art COOL model. Together, these
results show that it is possible to use information about the
data generating distribution implicitly learnt by denoising
autoencoders in meaningful ways, even without explicitly
modeling the full distribution.

It is to be noted that when comparing the results to the
COOL model we used the same degree of overcompleteness
(ω = 10) as in the original paper. However, fine tuning of
the parameter and in particular using higher values may
achieve higher performance on the benchmarking tasks used
here. Also, similarly to the original COOL paper, fooling was
attempted on the output of the classifier, rather than directly
on the confidence scores. This gives an advantage to systems
in which the confidence score is computed in more complex
ways, not directly dependent on the output of the classifier.
However, further tests as presented in Section 4.2 showed
that the system presented here significantly outperforms the
other models even when fooling is attempted directly on
the confidence scores. In this particular case, it was further
found that training the denoising autoencoder with heavy
regularization resulted in generated samples resembling
real digits, thus showing that the model had learnt a tight
boundary around the data manifold.

It is interesting that the Energy-Based GAN (EBGAN)
[29] makes use of the reconstruction error of a denoising
autoencoder in a way compatible with the interpretation
proposed here. In particular, it uses it as an approximated
energy function that is learnt by the autoencoder to take low
values for points belonging to the training distribution and
high values everywhere else. As we have seen in Equation 1,
it has been shown that the reconstruction error of denoising
autoencoders is proportional to the gradient of the log-
density of the data. Thus, small absolute values of the
reconstruction error correspond to extrema points of the
distribution, not limited to local maxima but also including
minima and saddle points. If Figure 2 were a good example
of the dynamics of the system even on more complex data,
then the problem of local minima and saddle points may
be limited. However, if that was not the case, then EBGAN
might learn to generate samples from regions of local minima
of the data distribution, which may not be desirable. It would
be interesting to modify the system using the Γ(x) function
described here (Equation 4) in order to correctly isolate only



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

the local maxima of the distribution.
It would also be interesting to apply the regularization

function used in EBGAN to the present model, adding a
Pulling-away Term (PT) that forces learnt representations to
be maximally different for different data points, by attempt-
ing to orthogonalize each pair of samples in a minibatch
[29]. The stronger regularization may help the denoising
autoencoder to learn a better representation of the data
manifold, thus improving the confidence score c̃(x).

Further improvements in the performance of the system
may be achieved by separating the classifier and the de-
noising autoencoder, although combining the two may have
other advantages, like adding a degree of semi-supervised
learning or regularization of the autoencoder. It may also
be possible to train an autoencoder to reconstruct hidden
representations produced by pre-trained models, thus relying
on more stable feature vectors rather than high-dimensional
raw inputs.

6 CONCLUSION

This paper presented a novel approach to address the
problem of overgeneralization in neural networks by pairing
a classifier with a denoising or contractive autoencoder
that is used to compute a confidence score that assigns
high values only for input vectors likely to belong to the
training data distribution. In particular, recognition of an
input as belonging to the distribution is performed by using
an approximation of the gradient of the log-density and
its curvature at the specific input point, and using this
information to determine whether it lies close to a local
maximum of the distribution.

We have further explored the application of the system
in the context of open set recognition. In general, the model
presented here could be used in more complex architectures
to allow for incremental and continual learning, by learning
to recognize the regions of input space that have already
been explored and learnt and potentially provide for different
training regimes in the unexplored parts, in case new samples
from those regions were to be observed in the future. For
example, it may be applied to a system to allow for adding
novel target classes even after deployment, without requiring
a full re-training that may be costly in terms of compute time
required, especially for large models. Similar to open set
recognition is also 1-class recognition, that has proven to be
a challenging problem. Building systems capable of robust
1-class recognition has critical applications in the detection
of novelty, outliers and anomalies.

In conclusion, developing discriminative models capable
of capturing aspects of the data distribution, even without
explicitly modeling it, can prove very useful in a large
number of practical applications, and future work on the
topic will be highly beneficial. Here a system was presented
to address the problem and was shown to perform better than
other previously proposed systems on a set of benchmarks.

APPENDIX
DETAILS OF THE SIMULATIONS

The models were trained on a cross-entropy loss by Stochastic
Gradient Descent using the ADAM algorithm [12] with η =

0.001, β1 = 0.9 and β2 = 0.999. Tensorflow [1] was used
for the experiments. The parameters α and β (Equations
3 and 4) were empirically tuned to achieve a compromise
between robustness to overgeneralization and decrease in
the thresholded accuracies for the different datasets and
threshold levels.

6.1 2D example

The dAE model used parameters α = 40, β = 5 and σ = 0.2,
and a symmetric denoising autoencoder with inputs of size 2
and two hidden layers both of size 200. The classifier was a
fully-connected layer attached to the top hidden layer of the
autoencoder and had 3 output units. Training was performed
for 50000 steps with minibatches of size 64. The three target
distributions were defined as uniform rings with thickness
of 0.1 and inner radius of 0.6, centered at the three points
(−1, 1), (1, 1) and (1,−1).

6.2 Fooling

The models compared are a regular CNN, the same
CNN with the output layer replaced with a COOL layer
(degree of overcompleteness ω = 10, as in [11]), and
the same CNN with the addition of a decoder con-
nected to the top hidden layer of the CNN, to com-
plete the denoising autoencoder used to compute the
confidence score c̃(x). The architecture of the CNN is
{Conv2D(1→ 32, 5×5), MaxPool(2×2), Conv2D(32→
64, 5 × 5), MaxPool(2 × 2), FullyConnected(64 →
400), FullyConnected(400→ 10)}. Each layer is followed
by a ReLU non-linearity, except for the output layer that is
followed by a softmax. Fooling was attempted for 20 times
for each digit, each for up to 10000 update steps with a
learning rate for updating the FGN set to η = 0.00001 as in
[11]. Training was performed for 100 epochs for each model.
The dAE model was trained with additive Gaussian noise
with zero mean and σ = 0.2 for MNIST, σ = 0.1 for Fashion-
MNIST, and parameters β = 10 and α variable depending
on the threshold used (α = 20 for the 90% classification
threshold, α = 3 for the 99% threshold on MNIST, and
α = 2 for the 99% threshold on Fashion-MNIST). All models
trained on the Fashion-MNIST dataset used L2 regularization
with λL2

= 10 (i.e., CNN, COOL and dAE).

6.3 Open Set Recognition

The Open Set Recognition tests used the same models as for
the MNIST fooling ones, with a single threshold of 99%.

6.4 1-Class Recognition

The COOL and dAE models used the same parameters as
the other experiments, except for the MNIST experiments in
which L2 regularization of the weights was used (λL2 = 10)
for the dAE model, as well as σ = 0.3. 1-Class SVM was
trained using the scikit-learn library [19], and used ν = 0.1
and an RBF kernel (γ = 0.1).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

[2] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed
numeric and categorical data,” Data & Knowledge Engineering,
vol. 63, no. 2, pp. 503–527, 2007.

[3] G. Alain and Y. Bengio, “What regularized auto-encoders learn
from the data-generating distribution,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 3563–3593, 2014.

[4] H. Barakat and D. Blostein, “Training with positive and negative
data samples: effects on a classifier for hand-drawn geometric
shapes,” in Proceedings of Sixth International Conference on Document
Analysis and Recognition. IEEE, 2001, pp. 1017–1021.

[5] A. Bendale and T. Boult, “Towards open world recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1893–1902.

[6] A. Bendale and T. E. Boult, “Towards open set deep networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1563–1572.

[7] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denois-
ing auto-encoders as generative models,” in Advances in Neural
Information Processing Systems, 2013, pp. 899–907.

[8] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A com-
parative evaluation of outlier detection algorithms: Experiments
and analyses,” Pattern Recognition, vol. 74, pp. 406–421, 2018.

[9] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using
k-nearest neighbour graph,” in Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International Conference on, vol. 3. IEEE, 2004,
pp. 430–433.

[10] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks,” arXiv
preprint arXiv:1610.02136, 2016.

[11] N. Kardan and K. O. Stanley, “Mitigating fooling with competitive
overcomplete output layer neural networks,” in Neural Networks
(IJCNN), 2017 International Joint Conference on. IEEE, 2017, pp.
518–525.

[12] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[13] Y. LeCun, “The mnist database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

[14] M. Markou and S. Singh, “Novelty detection: a review - part 1:
statistical approaches,” Signal processing, vol. 83, no. 12, pp. 2481–
2497, 2003.

[15] G. Münz, S. Li, and G. Carle, “Traffic anomaly detection using
k-means clustering,” in GI/ITG Workshop MMBnet, 2007, pp. 13–14.

[16] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 427–436.

[17] C. Park, J. Z. Huang, and Y. Ding, “A computable plug-in estimator
of minimum volume sets for novelty detection,” Operations Research,
vol. 58, no. 5, pp. 1469–1480, 2010.

[18] H. Parvin, B. Minaei-Bidgoli, and H. Alinejad-Rokny, “A new
imbalanced learning and dictions tree method for breast cancer
diagnosis,” Journal of Bionanoscience, vol. 7, no. 6, pp. 673–678, 2013.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] P. J. Phillips, P. Grother, and R. Micheals, “Evaluation methods in
face recognition,” in Handbook of face recognition. Springer, 2011,
pp. 551–574.

[21] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in
Proceedings of the 28th international conference on machine learning
(ICML-11), 2011, pp. 833–840.

[22] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2013.

[23] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for
open set recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 11, pp. 2317–2324, 2014.

[24] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[25] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support vector method for novelty detection,” in Advances
in neural information processing systems, 2000, pp. 582–588.

[26] D. M. Tax and R. P. Duin, “Support vector data description,”
Machine learning, vol. 54, no. 1, pp. 45–66, 2004.

[27] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 1096–1103.

[28] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[29] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative
adversarial network,” arXiv preprint arXiv:1609.03126, 2016.

[30] M. Zhao and V. Saligrama, “Anomaly detection with score functions
based on nearest neighbor graphs,” in Advances in neural information
processing systems, 2009, pp. 2250–2258.

Giacomo Spigler was born in 1990. He received
the B.Sc. (Hons.) Degree and Diploma (Hons.) in
computer engineering from the University of Pisa
and Scuola Superiore Sant’Anna, respectively,
the M.Sc. (Hons.) in cognitive science (com-
putational neuroscience and neuroinformatics)
from the University of Edinburgh, and a Ph.D.
in computational neuroscience at the University
of Sheffield. He is currently a post-doctoral re-
searcher at the Biorobotics Institute of the Scuola
Superiore Sant’Anna. His current research inter-

ests include deep neural networks, meta-learning and continual learning.


	Introduction
	Overview of Previous Work
	Proposed Solution
	Experiments
	2D example
	Fooling
	Open Set Recognition
	1-Class Recognition

	Discussion
	Conclusion
	2D example
	Fooling
	Open Set Recognition
	1-Class Recognition

	References
	Biographies
	Giacomo Spigler


