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Abstract

Repetition suppression refers to a reduction in the cortical response to a novel stimulus that

results from repeated presentation of the stimulus. We demonstrate repetition suppression

in a well established computational model of cortical plasticity, according to which the rela-

tive strengths of lateral inhibitory interactions are modified by Hebbian learning. We present

the model as an extension to the traditional account of repetition suppression offered by

sharpening theory, which emphasises the contribution of afferent plasticity, by instead

attributing the effect primarily to plasticity of intra-cortical circuitry. In support, repetition sup-

pression is shown to emerge in simulations with plasticity enabled only in intra-cortical con-

nections. We show in simulation how an extended ‘inhibitory sharpening theory’ can explain

the disruption of repetition suppression reported in studies that include an intermediate

phase of exposure to additional novel stimuli composed of features similar to those of the

original stimulus. The model suggests a re-interpretation of repetition suppression as a man-

ifestation of the process by which an initially distributed representation of a novel object

becomes a more localist representation. Thus, inhibitory sharpening may constitute a more

general process by which representation emerges from cortical re-organisation.

Introduction

The more often we encounter an object, for example the more often we see a particular face or

hear a particular voice, the more familiar it becomes. The first time we see a new face or hear a

new voice, it evokes a distributed pattern of activity amongst neurons that otherwise participate

in representing faces or voices with which we are already familiar. However, responses to

familiar objects are usually more localized, to different degrees of sparsity and selectivity [1–3].

Here we investigate how patterns of neural activity change as a novel object becomes familiar.

A distributed representation may be recovered from the responses in a population of neu-

rons, as a linear combination of the features to which those neurons typically respond,

weighted by their activities. For example, population activity in cat motor cortex has been

found to represent the 3D location of the paw as a vector sum of the paw locations preferred
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by the individual active neurons [4]. A similar type of distributed representation has been

found to encode complex shapes in primate visual area V4 [5], and to encode objects as a com-

bination of simpler features and smaller parts in primate temporal cortex [6]. In general, areas

representing complex objects like faces might use a population representation, constructed as

the joint activity of neurons selective to similar objects or their parts (e.g., in representations of

faces, neurons that are selective to specific eyes, mouths etc.).

If a novel object first evokes a distributed pattern of cortical activity amongst many neu-

rons, then familiarization may correspond to a transition from an initial distributed represen-

tation to a more localist representation that involves the activity of a smaller subset of the

original population.

This intuitive account of familiarization is indirectly supported by observations of repetition
suppression, whereby repeated presentations of a stimulus reduce subsequent cortical

responses to that stimulus [7]. Repetition suppression has been demonstrated using fMRI,

EEG, and single-neuron recordings, in humans and many other mammals [8–12], and it can

be modulated by short-term neural habituation [13], synchrony [14], expectation [11], and

attention and task-dependency [12, 15]. The opposite effect, repetition enhancement, can also

be measured, especially at the level of single neurons, with suppression following shortly after-

wards [16].

A plausible account of repetition suppression is offered by the sharpening theory [17–20],

according to which a reduction in cortical activity reflects a narrowing of neuronal tuning

curves and a silencing of the responses of the neurons least tuned to the stimulus. The assump-

tions of sharpening theory have been made explicit in a computational model [21], in which

synaptic weights in the afferent projections into a cortical network are modified by Hebbian

learning, while neurons compete laterally to represent a given input pattern under a simple

winner-take-all (k-WTA) operation. The architecture of this model is consistent with a broad

range of ‘self-organising network’ models that use similar local competitive learning mecha-

nisms to explain the emergence of continuous topological map patterns resembling those mea-

sured in primary cortical areas [22–25].

Here we use a model with explicit Hebbian-modifiable lateral interactions [26] to investi-

gate repetition suppression. The model accounts for the reduction in evoked cortical activity

as a strengthening of lateral inhibitory interactions. Essentially, the more often a stimulus is

presented the stronger the lateral inhibitory interactions between the responding neurons

become, leading to an increase in the selectivity and a reduction in the spatial extent and mag-

nitude of the response. The assumptions of this model are broadly consistent with those of

sharpening theory, but the simulations presented herein suggest that plasticity in cortical affer-

ents plays only a secondary role. Indeed, lateral plasticity alone is sufficient to account for repe-

tition suppression. We show how this account can be falsified, by deriving a non-intuitive

prediction from the model; repetition suppression for an ‘adapter’ object can be disrupted by

intervening exposure to objects that produce activity that overlaps with that elicited by the

adapter (i.e., by objects that have parts in common with the adapter).

A key prediction of the model is therefore that overlapping cortical representations inter-

fere with oneanother. The prediction of interference offered by this account could be useful in

interpretting data collected previously in a variety of contexts, such as visual masking [27], and

adaptive forgetting [28], as well as in the context of interference between objects of different

semantic categories [29]. Moreover, we explain how this modelling prediction helps discrimi-

nate between theories of repetition suppression based on Hebbian plasticity and alternative

theories, for example based on neural fatigue.

The inhibitory sharpening theory of repetition suppression
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Materials and methods

To investigate repetition suppression we use the ‘L-model’ of [26], which can be considered an

extension of the first model of map self-organisation proposed by von Der Malsburg in 1973

[22].

The 1973 model comprises a sheet of input units that are connected to a sheet of cortical

units, separated into excitatory and inhibitory populations. The input units are connected to

the cortical units by afferent weighted connections, and the cortical units are connected to

each other by lateral weighted connections that are excitatory over short distances and inhib-

itory over larger distances. The inputs elicit an initial response in each cortical unit, com-

puted as a weighted sum of its inputs via the afferent connections, which is squashed using a

non-linear (e.g., sigmoidal) output function. The initial cortical activation then propagates

through the lateral connections, and the net effect of the short-range excitation and long-

range inhibition is a dynamic that clusters an initial distributed cortical activation into a pat-

tern of localised ‘activity blobs’. Hebbian plasticity in the afferent connections consolidates

these dynamics, such that a similar pattern of input will cause a similar pattern of blobs to

emerge in the future. The afferent weights for each cortical unit are normalized by dividing

them by the sum of the afferent weights. If the network is presented with many patterns from

a set with some underlying statistical structure then the consolidation of the recurrent

dynamics through Hebbian plasticity gives rise to a topological map pattern, such that adja-

cent units develop similar receptive fields (i.e., similar patterns of afferent connectivity) and

thus respond selectively to similar patterns. For example, inputs describing a range of image

orientations yield orientation preference maps resembling those measured in primate V1.

The L-model explains the emergence of cortical maps according to the same underlying

mechanism; Hebbian plasticity, and short-range excitatory and long-range inhibitory recur-

rent interactions intrinsic to the cortical area [30–33]. For computational efficiency, the corti-

cal unit in the L-model is defined to be a micro-column rather than a neuron, which allows

simulation of a single population of cortical units that are each able to excite or inhibit one

another to support map self-organisation. The activity of cortical unit j at time t is given by,

ZjðtÞ ¼ s aA

X

a

Ajaxa þ aE

X

e

EjeZeðt � dtÞ � aI

X

i

IjiZiðt � dtÞ

 !

; ð1Þ

where A is its set of afferent connection weights, E is its set of excitatory weights, I is its set of

inhibitory weights, and values of α are interaction strengths. σ is a piecewise-linear output

function (see [26] for full details). The L-model then extends the 1973 model by allowing the

recurrent weights between cortical units to change according to the same Hebbian rule as for

the afferent weights,

wjkðtÞ ¼
wjkðt � 1Þ þ �pZjZk
P

pwjpðt � 1Þ þ �pZjZp
; ð2Þ

where wjk may be the weight of an afferent connection (i.e., by setting wjk = Ajk and ηk = xk), an

excitatory connection (i.e., wjk = Ejk), or an inhibitory connection (i.e., wjk = Ijk), � is the learn-

ing rate, and p is an index over the units for which there are corresponding weights in the set

A, E, or I.
An iteration of the L-model algorithm occurs at integer timesteps (t = 1, t = 2 etc.), and each

iteration involves defining an input pattern, applying Eq 1 to all cortical units τ times to allow

the dynamics to settle (δt = 1/τ), applying Eq 2 to modify the weights, and then resetting all

activity in the network to zero before the next iteration.

The inhibitory sharpening theory of repetition suppression
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It is important to emphasize that the L-model does not assume that long-range inhibitory

interactions are implemented via long-range inhibitory connections in the cortex. Long-range

inhibitory interactions may be implemented via long-range excitation of local inhibitory neu-

rons, as is thought to be the case in e.g., V1 for high-contrast visual inputs (see [34, 35]; and

see also refs. [36–39]), and in S1 for strong tactile inputs [40, 41]. The architecture of the L-

model is deliberately simplified and does not reflect the detailed anatomy of cortical connectiv-

ity. Related models with more complex architectures have demonstrated how the more elabo-

rate circuitry in animal cortices could yield similar results [42, 43], but these require many

more parameters and more complicated analysis methods. Whether long-range inhibition is

implemented by monosynaptic or disynaptic connections is not important for the present

modelling results, only that interactions be net inhibitory at long distances. See [26, 31] for fur-

ther discussion.

Further elaborations of the algorithm to include biologically plausible mechanisms of

homeostatic plasticity (e.g., a dynamic threshold in the output function σ) yield maps that

match all available data on the patterning, stability, and robustness of (non-rodent) mamma-

lian maps [26]. The ability of Hebbian-modifiable lateral inhibition to explain these data moti-

vates the L-model as a strong theory of cortical plasticity [25, 44].

Repetition suppression has mostly been recorded in ‘higher’ cortical areas [45], which are

characterized by large receptive fields and whose afferent input presumably represents stimuli

with a degree of invariance to the lower level features represented in primary cortical areas.

Our approach is to investigate repetition suppression in higher cortical areas by training the L-

model with afferent input patterns that represent the minimal set of assumptions about the

underlying network architecture that are required to reveal the effect. Therefore inputs to the

L-model are derived from nine ‘input units’, with the activation of each corresponding to the

presence of a particular stimulus feature such as a mouth or an eye. Each cortical unit has nine

afferent weights A corresponding to the nine input units xi 2 [0, 1].

In a period of pre-training, 10,000 input patterns, each a vector with a randomly selected

component set to 1 and the remaining eight set to values sampled uniform randomly in the

range 0 to 0.3, were presented to the network to initialize the cortical sheet with a smooth

map-like representation of the (nine-dimensional) input space. Homeostatic plasticity was

enabled during this pre-training period to aid the development of continuous maps. However,

as homeostatic plasticity is not a component of our account of repetition suppression it was

then disabled for the simulations reported herein. The equations of the homeostatic mecha-

nism used in pre-training are taken from ref. [26], and described in full in S1 Text.

A sheet of 48 by 48 cortical units was simulated. Interaction strengths were set to αA = 2.2,

αE = 1.2, and αI = 2.3 respectively, and the cortical dynamics were allowed to settle for τ = 16

settling steps. Learning rates were �A = 0.1, �E = 0, and �I = 0.3. Note that maps generated by

the model are indistinguishable regardless of whether or not plasticity is enabled in lateral

excitatory connections (data not shown), hence plasticity in lateral excitatory connections was

disabled (�E = 0) to allow for a clear interpretation of the results in terms of plastic lateral inhi-

bition (see [26, 46]). The full set of model parameters is included as S1 Text. The model was

implemented using the Topographica neural map simulator [47].

The mechanistic account of repetition suppression that is provided by the model is best

conveyed through plots such as that shown in Fig 1, in which an outline drawn around the

units that are active above a threshold of 0.3 highlights the most strongly responsive units. This

way the simulation data can be compared with data produced by [6], which shows how the

representations of different objects in inferotemporal cortex are distributed and overlapping,

and how subsets of the cortical units involved in the representation of complex ‘whole’ objects

are selective to the component features. The threshold for visualization was chosen to reveal

The inhibitory sharpening theory of repetition suppression
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how the representations learnt by the model are distributed across the network. Note that a

high threshold masks some units that participate in a given representation, whereas a low

threshold exaggerates the contribution of units with poor stimulus tuning. The thresholded

representations shown are thus an approximation used only to help the reader understand the

model dynamics, and the extent of the highlighted areas does not necessarily correspond in a

one-to-one fashion with the total response of the network, which we plot separately in later fig-

ures to reveal the dynamics of repetition suppression.

Results

To investigate how repetition suppression might emerge from intracortical plasticity we ran a

set of simulations using the ‘L-model’ [26], according to which both afferent and lateral corti-

cal connectivity is modifiable by Hebbian learning.

Plastic intracortical connectivity is sufficient to explain repetition

suppression

The first simulation involved presenting the same ‘adapter’ pattern to the network for 100 sim-

ulated model iterations, while recording the sum of the activity over all cortical units after the

settling of the recurrent dynamics. The adapter was the pattern x = {1, 1, 0, 0, 0, 0, 0, 0, 0},

which represents a simple ‘object’ as the configuration of two ‘parts’ (part x1 and part x2). The

network clearly shows repetition suppression, i.e., a reduction in total cortical activity due to

repeated presentation of the stimulus. Inspection of the pattern of activity generated by the

network reveals why. Fig 2 presents a comparison of the simulated cortical representation of

the adapter stimulus before (blue) and after (red) repetition suppression, in which it is clear

that the representation shrinks and ‘sharpens’ over time.

To investigate the relative contribution of afferent versus lateral plasticity to repetition sup-

pression, we simulated the network in three cases. In the first case plasticity was enabled in

both the afferent and inhibitory connections (afferent+inhibitory, i.e., the same procedure as

in Fig 2). In the second case plasticity was enabled only in the inhibitory connections, and the

weights of afferent connections were kept fixed from time t = 0 (inhibitory-only). In the third

Fig 1. Distributed representation of objects. A. Optical imaging of the infero-temporal cortex (IT) of a macaque

showing patches of neurons selective to parts of an object. The cortical representation of the whole object

significantly overlaps with that of its parts. Adapted from Fig 3b of [6]. B. Similar cortical organisation emerges in the

L-model of [26] in a simulation of 48 by 48 cortical units. Model units that are active by the object above a threshold of

0.2 are coloured grey, and those which are active by presentation of either of its constituent parts are coloured blue

or green.

https://doi.org/10.1371/journal.pone.0179306.g001

The inhibitory sharpening theory of repetition suppression
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Fig 2. Simulations showing repetition suppression. A. The L model [26] shows repetition suppression dynamics when a single

input stimulus is presented to the network. The total activation is computed at each iteration as the sum of the activity of all units in

the network. The plot is an average of 10 simulations ran with different random initial conditions, with the shaded area representing

standard deviation. B. The cortical representation of the repeated stimulus is visualized by thresholding the activity of the network

before (blue) and after (red) repetition suppression. Representations produced by the model are distributed across stable blobs of

highly active units. After repetition suppression, the response is “sharpened” [17], i.e., the sizes of blobs of super-threshold activity

shrink.

https://doi.org/10.1371/journal.pone.0179306.g002

Fig 3. Effect of afferent and inhibitory plasticity. A. Comparison of the dynamics of repetition suppression in the L-model [26] in

three cases: plasticity enabled in both the afferent and inhibitory connections (afferent+inhibitory, i.e., the same as in Fig 2);

plasticity enabled only in the inhibitory connections (inhibitory-only); and plasticity enabled in the afferent connections, using fixed

inhibitory connections (afferent-only). Plasticity in the inhibitory connections is revealed to be necessary to produce a decrease in

the total activation of the network. We note that the case of afferent-only produces an increase in the total activation of the model,

and that plasticity in the afferent connections alone is not guaranteed to decrease, as the activation depends on a balance between

the magnitude of increase and decrease in activity of the individual units. We indeed observe both repetition suppression and

enhancement of individual units, producing sharpened representations with repetition, as in previous work [21]. B. We compare the

representation of the adapter stimulus in the afferent-only case before and after repetition, which shows that while the total

activation in the model increases with repetition, the representation does become sharpened and shows a decrease in the number

of active units.

https://doi.org/10.1371/journal.pone.0179306.g003

The inhibitory sharpening theory of repetition suppression
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case plasticity was enabled only in the afferent connections, and the weights of inhibitory con-

nections were kept fixed from time t = 0 (afferent-only). As shown in Fig 3, the decrease in the

total activation of the model cortex depends heavily on the strengthening of the inhibitory

interactions between units active in the same representation, and it occurs even when afferent

plasticity is disabled. However, even though the case in which inhibitory plasticity is disabled

does not cause a decrease in activity, it still produces sharpening in the representation of the

adapter stimulus (Fig 3B). Herein we use the full model with afferent and lateral plasticity

enabled, while the same simulations in the other cases (inhibitory-only and afferent-only) are

available as Figs C and D in S2 Text.

Interfering representations disrupt repetition suppression

Several studies have investigated the effects of interrupting repetition suppression for an

‘adapter’ object by presenting a number of ‘intervening’ objects, and then measuring the

response to the original adapter presented again. It is interesting that there exists conflicting

evidence on the effect of such designs. An early study of single neurons in primate inferotem-

poral cortex, for example, found that repetition suppression was unaffected by the presentation

of more than 150 intervening stimuli between successive presentations of the adapter pattern

(Li et al., [8]). However, more recent fMRI studies with humans have reported significant dif-

ferences between responses before and after interruption (Henson et al., [12, 48]). The differ-

ence between these findings might be due to a variety of factors, from differences in the

measured signals (single-neuron electrophysiology versus local field potential versus func-

tional-MRI) to differences in protocol (stimulus type, duration, task, previous exposure to the

adapters etc.) and species (human versus non-human primates).

Specifically, we hypothesize here that intervening stimuli whose cortical representation

overlaps significantly with that of the adapter (i.e., whose active neurons respond to both

objects) may interfere with repetition suppression. Li et al., used stimuli less likely to produce

overlapping cortical activations (line drawings of objects from various semantic categories),

whereas the studies by Henson et al., used faces, that despite being unique and distinguishable

from oneanother are processed in very localized regions of the neocortex (i.e., in the fusiform

face area, FFA).

To explore these interactions further, we subjected the network to a three-phase design. In

the first phase of the experiment, the adapter pattern was presented as input, thus producing

repetition suppression dynamics as before. During the second phase, the network was shown a

different, intervening stimulus. In the third phase, the original adapter was presented again.

Each phase was run for 100 simulated steps. In what we call the ‘non-overlap’ condition, the

intervening stimulus presented in phase 2 represented two ‘parts’ that did not feature in the

adapter stimulus (e.g., x4 = 1 and x5 = 1). In what we call the ‘overlap’ condition, the interven-

ing stimulus consisted of one part from the adapter stimulus and one new part (e.g., x1 = 1 and

x3 = 1). The difference between these two conditions constitutes our hypothesis about the criti-

cal difference between the stimuli used by Li et al., (comparable with our ‘non-overlap’ condi-

tion) and Henson et al., (comparable with our ‘overlap’ condition); see Fig 4.

In the non-overlap condition, repetition suppression was not affected by presentation of

the phase 2 stimulus (Fig 5A), and the cortical response to the adapter did not change between

the final trial of phase 1 and the first trial of phase 3 (Fig 5B). The network response in the

non-overlap condition is therefore consistent with the findings of Li et al. [8]. In the overlap

condition, however, repetition suppression was strongly affected by the presentation of the

intervening stimulus (Fig 5C), which caused an increase in the response to the adapter at the

beginning of phase 3, reflecting a re-organization of the representation of the adapter (Fig 5D).

The inhibitory sharpening theory of repetition suppression
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A comparison presented in Fig 6 reveals no significant difference in the total cortical response

to the adapter before versus after phase 2 in the non-overlap condition (paired t-test, t(18) =

−2.0161, p> 0.05), but a significant difference between the two responses in the overlap condi-

tion (paired t-test, t(18) = −7.944, p< 0.0001). Statistical tests were performed on data from 10

independent simulations, pre-trained and run with different random seeds and random initial

conditions.

Discussion

The self-organising models of Stevens and colleagues [26] constitutes our current best theory

of the emergence of topological maps in primate neocortex. The distinguishing feature of this

theory is that both afferent and lateral connectivity is updated using mechanisms of Hebbian

plasticity. As a consequence, intra-cortical interactions strengthen between units that are co-

active. In particular, repeated presentations of the same stimulus produce a strengthening of

the inhibitory interactions between the units that are recruited into its cortical representation

(i.e., the units activated by the presentation of the stimulus), and thus a lowering of the overall

level of activity. We suggest that such factors might underlie the phenomenon of repetition

suppression.

A previous model has shown that sharpening can arise from plasticity in afferent projec-

tions alone, if strong competition between the model units is present [21]. However, repetition

suppression was only measured in individual units, and the authors explain that the overall

activation in the model is not guaranteed to decrease with repetition, as it depends on a bal-

ance between the magnitudes of suppression and enhancement of individual units. Further,

this model approximated the net effects of recurrent inhibitory interactions in the neocortex

using a simple winner-take-all operation, which may only account for few of the complex

interactions that emerge from plasticity in real biological networks. In this study we explicitly

simulated the recurrent cortical interactions that mediate local competition, and we showed

that plasticity in the lateral inhibition between cortical units is sufficient to account for

Fig 4. Influence of intervening stimuli on the degree of cortical overlap. A. The effect of intervening patterns in repetition suppression can

be tested with a three phase protocol. First, an adapter object is presented to the network, in order to produce repetition suppression. In the

second phase, the input is replaced with an intervening pattern (either overlap or non-overlap). Finally, the original adapter pattern is presented

to the network again. Each phase consists of 100 iterations. The stimuli are nine-dimensional vectors (vizualised here as 3 by 3 grids). B.

Comparison of the cortical representations of the phase 1 and phase 2 stimuli, computed at the end of phase 1. At this point the network has

learnt an explicit representation of the adapter (blue). However, no explicit representation of the overlap or non-overlap stimuli has emerged.

The intervening stimuli (phase 2) use some (‘overlap’ object; red) or none (‘non-overlap’; green) of the components of the adapter. The cortical

representation to the non-overlap pattern has minimal to zero overlap with that of the adapter.

https://doi.org/10.1371/journal.pone.0179306.g004

The inhibitory sharpening theory of repetition suppression
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repetition suppression, even without afferent plasticity (Fig 3). Our main simulations include

both lateral and afferent plasticity, hence the present results do not challenge the idea that

afferent plasticity contributes substantially to repetition suppression. Instead, we claim that

repetition suppression reflects a combination of both afferent and lateral plasticity.

Fig 5. Dynamics for the non-overlap versus overlap simulations. A. The level of activity in the network is not affected by an

intermediate phase in which a different (non-overlap) stimulus is presented. The plot shows the model activity averaged over 10 simulations

pre-trained with different random initial conditions. The shaded area is the standard deviation. B. The cortical representation of the adapter

does not change during the intermediate phase (iterations 100 to 200) when presented with the non-overlap stimulus. Indeed, there is no

interaction between the representation of the adapter and intervening stimuli. C. The activity generated by the model is different when the

overlap stimulus is used instead of the non-overlap stimulus. After the intermediate phase, the activity increases rather than remaining

constant (as it does in panel A). D. The representation of the adapter stimulus changes during the intermediate phase when the overlap

stimulus is used. Note that the total activation computed in panels A and C is the sum of the activity of all units (not the number of active

units shown in the cortical representation; B,D).

https://doi.org/10.1371/journal.pone.0179306.g005

The inhibitory sharpening theory of repetition suppression
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This account is broadly consistent with sharpening theory, according to which a reduction

in the cortical response reflects a narrowing of tuning curves and therefore an increase in the

selectivity of neuronal activity. The current model extends sharpening theory by emphasising

also the role of intra-cortical plasticity. According to this extended ‘inhibitory sharpening’

model, tuning curves narrow due to the effects of both afferent and lateral plasticity. Essen-

tially, the co-activation of units recruited in the representation of the adapter stimulus causes a

strengthening of mutual inhibition between them via Hebbian plasticity, and as this mutual

inhibition builds over time the responses of individual units become more selective, the overall

cortical response decreases, and the least selective neurons are silenced.

Alternatives to the sharpening theory are theories based on neural fatigue, according to

which repetition suppression reflects a depletion in the resources required by neurons in order

to spike [8, 20]. Neural fatigue theories seem to be supported by single-unit studies showing

that the greatest reduction in cortical activity is attributable to the neurons that respond most

strongly to the first presentation of an adapter stimulus. However, the inhibitory sharpening

account provides an alternative explanation. By Hebbian association, the units that happen to

be most active upon first presentation of the adapter stimulus subsequently develop the stron-

gest mutual inhibition.

We further note that the dependency of the inhibitory sharpening theory on plastic lateral

connectivity makes its dynamics consistent with the predictive coding framework, which also

offers an alternative interpretation of repetition suppression compared with theories based on

neural fatigue and sharpening [49–51]. According to predictive coding, each cortical area

predicts the incoming sensory signal, and makes the unpredicted portion of the signal (the

Fig 6. Non-overlap versus overlap. Comparison of the difference in activity produced by the adapter

stimulus before and after the intermediate phase (iteration 100 versus 200), in the non-overlap and overlap

simulations. The difference due to the overlap stimulus was statistically significant (paired t-test, t(18) =

−7.944, p < 0.0001). Any difference due to the non-overlap stimulus was not significant (paired t-test, t(18) =

−2.0161, p > 0.05). The tests were performed on data from 10 different simulations, using models pre-trained

and ran with different random seeds.

https://doi.org/10.1371/journal.pone.0179306.g006
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prediction error) available to subsequent processing areas. Repeated presentation of a stimulus

leads to synaptic changes that improve the ability to predict future stimuli, reducing the pre-

diction error and thus reducing levels of cortical activation [52, 53].

Interestingly, when a neural mass model of cortical dynamics was inverted to fit empirical

data, the assumption of an intrinsic (intra-area) and extrinsic (inter-area) cortical connectivity

which reduced exponentially with stimulus presentations could explain most of the suppres-

sion (though an additional phasic term helped increase the fit) [54]. The authors interpreted

the changes in intrinsic and extrinsic cortical circuitry in terms of the perceptual and plastic

components of the computations required for predictive coding. Specifically, they reported a

consistent decrease in coupling in the intrinsic connectivity following the first stimulus presen-

tation, which is broadly consistent with the Hebbian buildup of recurrent lateral inhibition

predicted by the present model. An extension of the present model to include extrinsic interac-

tions between cortical areas, guided by the predictive coding framework, may allow for a

mechanistic account of the contribution of plastic recurrent cortical interactions to hierarchi-

cal cortical computation. Moreover, as the cortical interactions simulated in the present model

are known to subserve topological map formation, this approach could provide a theoretical

bridge between predictive coding (acting on psychophysical timescales) and map development

(acting on developmental timescales).

Other avenues for future research include establishing the relationship between inhibitory

sharpening and accounts of repetition suppression in terms of increasing speed of processing

[55] and enhanced neural synchronization [14].

The critical test of our model, and hence of the extended ‘inhibitory sharpening’ theory that

it represents, is demonstrated in Figs 5 and 6. Experimental confirmation of the prediction

that repetition suppression may be modulated and disrupted by stimuli with a cortical repre-

sentation that overlaps that of the adapter (e.g., comprising a subset of the features of the

adapter stimulus), would constitute support for the inhibitory sharpening theory. In contrast,

in the same protocol neural fatigue would likely predict a further decrease in cortical activity,

as the shared units would undergo further repetition suppression independently in each of the

three phases. Sharpening would also predict a further suppression of the activity due to the

overlap stimulus, but the decrease could be minimal or absent depending on the narrowing of

the tuning of the neurons selective to the adapter stimulus after its first repetition. Predictive

coding, on the other hand, might exhibit more complex dynamics. Indeed, the presentation of

the overlap stimulus could introduce a new statistical co-occurrence between the parts/features

shared by the adapter and the overlap stimuli, and the novel parts of the overlap stimulus.

Such co-occurrence would not be observed on the second repetition of the adapter, in the

third phase of the protocol, which would result in an increased error due to the un-predicted

mismatch and thus an increase in activity similar to that from inhibitory sharpening. This is

however not too surprising, as plastic recurrent lateral connections can learn the statistical co-

occurrence of features [30, 46, 56].

To understand why the L-model predicts an increase in activation after the intermediate

phase, it is useful to look at the changes in the representations of the stimuli before and after

each of the three phases (Fig 7). During the first phase of repetition suppression, the co-activa-

tion of units recruited in the representation of the adapter stimulus led to a strengthening of

their mutual inhibition by Hebbian plasticity, and thus to a suppression of responses in a sub-

set of units (Fig 2B). However, presentation of a second stimulus sharing features of the

adapter increased the inhibition between units selective only to the second stimulus and units

responding to both, and further led to some of the units responsive to both to drop out of the

representation of the adapter stimulus and into the representation of the second stimulus.

Thus, some of the units in the representation of the adapter were suppressed, while others had
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the distribution of their inhibitory inputs shifted towards units selective for the second stimu-

lus (see Figs E and F in S2 Text), due in part to divisive normalization of the synaptic weights

(Eq 2). When the adapter pattern was presented again in a third phase, the total inhibition

received by the units suppressed during the first phase was reduced. This is because either the

inhibitory weights between units representing the adapter had decreased or the inhibiting

units were no longer active. The variety of inhibitory interactions is illustrated in Fig 7, which

shows the change in the influence of one pre-synaptic unit over four post-synaptic units.

Another example is shown in Fig F in S2 Text.

The model can account for why some studies have found that repetition suppression is

affected by intervening patterns whereas others have not, in terms of differences in the choice

of the stimuli. In particular, Li and colleagues [8] used stimuli that were sufficiently different

from oneanother, which could therefore have produced cortical responses with little overlap

and hence little interference. Henson et al. [12, 48], on the other hand, used pictures of faces

(famous versus unfamiliar), that despite their individual differences could have elicited over-

lapping representations whose effect would have been further amplified by the large number

of intervening stimuli (around 100). In support of our account of these effects, we note that

Sawamura and colleagues [57] found that the firing rates of neurons in monkey infero-tempo-

ral cortex depend on whether a preceding stimulus was the same (causing repetition suppres-

sion), different but capable of making the same neuron fire (causing a response similar to the

prediction in our overlap condition), or different and not capable of making the neuron fire

(causing a response similar to the prediction in our non-overlap condition).

A limitation of the current modelling framework is that due to the discrete timescales of the

settling steps of the recurrent dynamics, and of the onset of new iterations, neurophysiological

Fig 7. Changes in lateral connectivity underlying repetition suppression. This figure exemplifies the changes in the

effective contribution of four different inhibitory connections from the same pre-synaptic neuron during each experimental

phase. The width and color of the lines indicates the strength of inhibition received by the post-synaptic units; the product of

the pre-synaptic activity and the weight of the inhibition. Each panel shows the cortical representation of the adapter and

overlap stimuli, on the first iteration of each phase. A; iteration 0, B; iteration 100, and C; iteration 200. During the first phase

the strength of the inhibition between the co-active units (i.e., those belonging to the same representation) increases, leading

to a subset of them being suppressed. In the intermediate phase, however, the inhibition between the shared units (overlap/

adapt) and the units selective only to the overlap pattern increased, and further led to some of the shared units to be removed

from the representation of the adapter in favor of the overlap stimulus. Thus, some of the units in the representation of the

adapter became suppressed, while others shifted the distribution of their inhibitory inputs to units in the representation of the

overlap stimulus. When the adapter was presented again, the total amount of inhibition that the units that had been

suppressed during the first phase received was reduced, as either the inhibitory weights between units in that representation

had decreased or the units that inhibited them were not active anymore. Another example is shown in Fig F in S2 Text.

https://doi.org/10.1371/journal.pone.0179306.g007
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timescales in the model are difficult to reconcile precisely with psychological timescales. A sin-

gle presentation of a stimulus on a psychologically relevant timescale corresponds to multiple

simulated ‘iterations’ of the model. To reconcile stimulus presentations and model iterations

approximately, we ran the model for an extended period of 1000 iterations. The longer-term

dynamics conformed to an exponential decay fit to the total activation (y(t) = ae−bt + c), and

thus match the empirically observed dynamics of repetition suppression [8, 58]. Although

there is significant variability between studies of repetition suppression regarding the number

of repetitions after which activation plateaus, which may depend on differences in protocol,

species and recording techniques, the various estimates in the literature agree broadly that a

plateau is reached within 5–10 repetitions. Thus, drawing a parallel to the fitted exponential

curve in Fig 8, which reaches a plateau within the 1000 iterations displayed, it may be possible

to consider the 100 iterations used throughout this manuscript as roughly corresponding to a

single repetition of the adapter stimulus.

The mechanistic account of repetition suppression (and facilitation) offered by the inhibi-

tory sharpening theory may be challenged further by investigating the effects of interference in

perceptual discrimination tasks, using the degree of similarity and overlap in cortical represen-

tations to quantify the ‘confusion’ between similar stimuli. For example, multi-voxel fMRI

analysis such as representational similarity analysis [59, 60], could be used to measure the simi-

larity and overlap between representations, and multi-voxel pattern analysis [61] could be

used to correlate the performance of a classifier built on the representations of the stimuli

(measured by fMRI imaging) with the behavioral discrimination accuracy.

Fig 8. Longer term dynamics of repetition suppression. Repetition suppression in the model was

simulated for an extended period of 1000 iterations. The longer-term dynamics conform to an exponential

decay fit to the total activation (y(t) = ae−bt + c), approximating the general form of the dynamics of repetition

suppression measured by e.g., [8, 58].

https://doi.org/10.1371/journal.pone.0179306.g008
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Experimental confirmation of the predictions of the model would provide evidence that

repetition suppression, as an emergent property of plastic lateral interations, reflects a transi-

tion in the cortical representation of stimuli from a distributed to a localist encoding.
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