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Abstract. Depression and anxiety disorders are prevalent mental health chal-
lenges affecting a substantial segment of the global population. In this study, we
explored the environmental correlates of these disorders by analyzing street-view
images (SVI) of neighborhoods in the Netherlands. Our dataset comprises 9,879
Dutch SVIs sourced from Google Street View, paired with statistical depression
and anxiety risk metrics from the Dutch Health Monitor.
To tackle this challenge, we refined two existing neural network architectures,
DeiT Base and ResNet50. Our goal was to predict neighborhood risk levels,
categorized into four tiers from low to high risk, using the raw images. The
results showed that DeiT Base and ResNet50 achieved accuracies of 43.43% and
43.63%, respectively. Notably, a significant portion of the errors were between
adjacent risk categories, resulting in adjusted accuracies of 83.55% and 80.38%.
We also implemented the SHapley Additive exPlanations (SHAP) method on
both models and employed gradient rollout on DeiT. Interestingly, while SHAP
underscored specific landscape attributes, the correlation between these features
and distinct depression risk categories remained unclear. The gradient rollout
findings were similarly non-definitive. However, through manual analysis, we
identified certain landscape types that were consistently linked with specific risk
categories. These findings suggest the potential of these techniques in monitoring
the correlation between various landscapes and environmental risk factors for
mental health issues. As a future direction, we recommend employing these
methods to observe how risk scores from the Dutch Health Monitor shift across
neighborhoods over time.

Keywords: Deep Learning · Mental Health · Depression · Anxiety · Street View
Images · Explainable AI · XAI · Netherlands.

1 Introduction

Anxiety disorders and depression remain dominant mental health concerns globally
(Dattani, Ritchie, & Roser, 2021). Traditional methodologies that investigate the
relationship between these disorders and environmental aspects like street environments,
primarily rely on manual surveys and identification of pre-specified features. These
methods are not only expensive but also subjective (Odgers, Caspi, Bates, Sampson, &
Moffitt, 2012). A growing body of recent research underscores the potential of Deep
Learning (DL) applied to Street View Images (SVI) as a promising alternative (Biljecki
& Ito, 2021; Helbich et al., 2019; Rzotkiewicz, Pearson, Dougherty, Shortridge, & Wilson,
2018; Wang et al., 2019). However, there exists a noticeable gap in exploring this in a
Dutch setting, which our study seeks to bridge.
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Breaking from the convention of feature extraction dominant in prior studies, we
harness the latest advancements in computational power to apply DL directly to SVI.
By using Explainable AI (XAI) techniques, our goal is to dissect the patterns the models
learn from these images, pinpointing crucial components that play a role in predicting
the risk of depression and anxiety.

Our primary research objective is to determine the efficacy of DL techniques applied
to SVI in predicting and analyzing the proxy of the incidence of anxiety and depression
disorders within the Netherlands.

To achieve the objective, we fine-tuned two distinct pre-existing neural network
architectures. The resulting accuracies achieved non-trivial performance, hinting at the
significance of the content of SVIs for predicting mental well-being. Further, analysis
using the SHapley Additive exPlanations (SHAP) technique spotlighted specific features
as being pivotal in the model’s predictive decisions across various categories. Yet, the
overlapping influence of these identified features suggests they cannot be earmarked as
indicators for any specific class.

Our main contributions are:

– Collection of a curated Dutch SVI dataset - including both rural and urban areas -
with associated labels for "high risk of depression and anxiety" metrics from the
Dutch Health Monitor.

– Fine-tuning two neural network architectures to predict depression and anxiety risk
directly from SVIs, achieving non-trivial performance.

– Analysis to identify significant elements in SVIs using Explainable Artificial Intelli-
gence (XAI) techniques.

– We release the code used to collect the dataset and to perform the analysis at
https://github.com/khna89/DL_streetview_depression_anxiety.

2 Related Work

2.1 SVI in (mental) health research

Street View Imagery (SVI) provides a firsthand look at urban settings, almost as if
one is walking on the streets themselves (Ki & Lee, 2021; Li, Zhang, Li, Kuzovkina, &
Weiner, 2015). Some studies indicate that SVI can provide insights on health-related
factors, like how walk-friendly a neighborhood is, in situations where traditional maps
or satellite images don’t offer clear answers (Ki & Lee, 2021).

Researchers have been tapping into SVI to examine how urban features relate to
behavior, health, and demographic patterns (Biljecki & Ito, 2021; Rzotkiewicz et al.,
2018). Recently, deep learning has been employed to identify specific attributes in these
images, such as the amount of greenery (Helbich et al., 2019; Ki & Lee, 2021) or types
of buildings (Nguyen et al., 2018). For example, areas where a lot of sky and trees are
visible directly from the street have been linked with lower rates of depression among
the elderly (Helbich et al., 2019; Wang et al., 2019). However, these approaches focus
on a limited set of features, potentially missing other influential environmental factors.
Along these lines, Odgers et al. (2012) demonstrated that detecting more features of
the environment could be effective in predicting several health-related variables.
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In this study, we extend previous work by using machine learning to predict depres-
sion and anxiety risk levels directly from SVIs, instead of relying on manually defined
features. Salient features are then investigated using Explainable AI (XAI) methods.

2.2 Data collection in SVI-based health studies

In health studies utilizing Street View Imagery (SVI), the common practice involves
measuring the primary metric of interest, such as depression or mobility levels, through
individual assessments. Subsequently, researchers extract SVIs around the subjects’
residences to aid in model training (Helbich et al., 2019; Ki & Lee, 2021; Lu, 2019).
Fewer studies target aggregate-level data, but a distinguished contribution in this realm
is by Keralis et al. (2020). The volume of images acquired per study is varied: while
Ki and Lee (2021) procured an average of 180 SVIs for each participant’s location,
Helbich et al. (2019) amassed approximately 2,807 images per subject, and Lu (2019)
aggregated around 1,740 images for each housing estate (where multiple participants
lived). While the prevalent methodology involves virtually navigating streets to compile
images, Keralis et al. (2020), due to the absence of precise residential addresses, opted
to determine the coordinates of all junctions within their designated region, leading
to the collection of a staggering 31 million images spanning 20,000 neighborhoods.
The criteria set for neighborhood selection exhibits differences across studies: Ki and
Lee (2021) selected based on locations provided by survey respondents, Helbich et
al. (2019) emphasized regions with aging demographics and heightened prevalence of
mental disorders, while Lu (2019) aimed for a diverse spread in the primary metric but
instituted controls for socio-economic variables.

2.3 Explainability in computer vision

Understanding how a model makes decisions can be crucial, especially when analyzing
environmental factors related to mental health. It is thus useful to employ explainability
techniques to help make model decisions more transparent and easier to grasp for
humans (Hase & Bansal, 2020; Rudin, 2019).

One standout method in the realm of Explainable AI (XAI) is the SHapley Additive
exPlanations (SHAP) (Lundberg & Lee, 2017). While various approaches exist, SHAP
brings several of them, like LIME, DeepLIFT, and Layer-wise relevance propagation,
under one umbrella. Notably, SHAP is able to align its explanations with human thinking
(Lundberg & Lee, 2017). Simply put, SHAP values show how much each feature in an
image affects the predictions of the model. In this study, we chose SHAP for its proven
human interpretability and model-agnostic nature, enabling its application across our
fine-tuned networks.

Additionally, we explored the use of “attention rollout”, an XAI method specifically
designed for vision transformers (ViT) (Dosovitskiy et al., 2020). ViTs, while accurate,
exhibit complex relationships in their inputs due to their self-attention mechanisms, com-
plicating model interpretation (Mahmoudi et al., 2023). The attention rollout technique,
as introduced by Abnar and Zuidema (2020), provides a solution by systematically
unrolling attention throughout the model’s layers, thereby constructing a comprehensive
attention graph. Recent literature indicates the potential of this method in improving
the clarity of explanations for image classification tasks (Gildenblat, 2020).
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3 Methods

3.1 Data

The data used in this project consists of mental health statistics collected per neigh-
bourhood, together with a collection of Street View Images (SVI) sampled for each
neighbourhood.

Mental health data. Target variable was derived from the Dutch Health Monitor
(Gezondheidsmonitor Volwassenen en Ouderen 2020, GGD’en/CBS/ (2020)). The Dutch
Health Monitor measures depression and anxiety risk based on the Kessler-10 scale
(Kessler et al., 2002), and contains responses from 540,000 participants aged 18+.
Namely, each respondent answered 10 questions, each yielding a score between 1 and 5.
The sum of these scores determined the risk level for depression or anxiety disorders.
Specifically, a total score of 30-50 categorized a participant as high-risk. The percentage
of high-risk individuals in each neighborhood served as our initial continuous target
variable.

We discretized and stratified the risk metrics into 5 levels of risk of depression
and anxiety: “very low”, “low”, “moderate”, “high”, “very high”. The discretization was
accomplished by dividing the range of the “high risk of depression and anxiety” scores
(in the range of 1% to 21.9%) into five uniform intervals (Table 1). This allowed for
equally representing depression scores in order to train the classifier to be equally good
at all the levels. Nevertheless, this approach does not mirror the actual distribution
of the variable, as shown in the Supplementary Materials. Notably, the majority of
instances in the monitor fall in the “very low” and “low” brackets. Since the “very high”
category was only associated with 7 neighborhood and was thus at risk of overfitting,
we decided to combine the “high” and “very high” categories together into a single class.

Table 1: Discretization of the variable “high risk of depression and anxiety” from the
Duth Health Monitor into 5 uniform intervals. The last two intervals were collapsed
into one class for further training.

Level Interval Number of neighbourhoods
very low (1, 5.38) 7960
low (5.39, 9.76) 4043
moderate (9.77, 14.14) 944
high & very high (14.15, 18.52) & (18.53, 22.9) 119 (112 & 7)

SVI (General considerations). Since there is no publicly available Dutch SVI
dataset, part of the study involved the collection of the dataset. In order to also cover
the gap in studies for rural areas, and taking advantage of the vast farming landscape of
the Netherlands, the data was collected from the cities as well as from the rural areas.

Building upon previous research that highlighted the predictive significance of
greenery for mental health variables (Helbich et al., 2019; Wang et al., 2019), our data
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collection was restricted to the ’green’ months, from May to September. This strategy
ensures a more accurate representation by mitigating the seasonal variations that might
influence the predictive accuracy of each neighborhood on the target variable.

Geographically stratified sampling. To ensure a well-rounded representation of
the study area, we devised a sampling protocol to capture a uniform number of images
for each category of the target variable. To achieve a balanced dataset, we sampled:

– 1 image for each “very low risk” and “low risk” sampled neighborhood;
– 3 images for each “moderate risk” neighborhood;
– 20 images for each of the combined “high and very high risk” neighborhoods.

More details on this procedure can be found in the Supplementary Materials. From
this approach, we amassed a total of 9,879 images (detailed breakdown in Table 2),
representing 5,952 neighborhoods uniformly distributed across the country (Figure 1).
This collection method ensures near uniformity over the target classes, albeit with a
minor under-representation in the “high and very high” category.

Table 2: Number of street-view images for each target class.
Target class Number of images
very low 2500
low 2500
moderate 2499
high and very high 2380

SVI (Data preprocessing). The street-view images were randomly cropped from
512x512 pixels to 224x224 pixels for training to prevent overfitting and to match the
input size expected by pre-trained models. For validation and testing, full images
were resized to 224x224 pixels. Image RGB channels were normalized using ImageNet
statistics, mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225). The dataset was
randomly partitioned into training (70%), validation (15%), and test (15%) sets.

3.2 Experimental setup

Two pre-trained models, DeiT (Touvron et al., 2021) and ResNet-50 (He, Zhang, Ren,
& Sun, 2016), were used as base for the experiments. The models were modified by
replacing the output layer, specific for the classification task of interest over 4 categories.
A cross-entropy loss was used.

Hyperparameter tuning was performed using grid search on a subset of 30% of the
dataset for training and 10% for validation. For DeiT, we explored different architectures
(Tiny, Small, Base), number of unfrozen layers (0, 1, 3, 5), learning rates (0.01, 0.005,
0.001), and optimizers (Adam, SGD, Adagrad). For ResNet-50, similar parameters
were tested, with the addition of the RMSprop optimizer. Both models were then fine-
tuned using the best hyperparameter combinations and the full training set. Detailed
hyperparameter values are provided in the Supplementary Materials.
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Fig. 1: Geographical distribution of neighbourhoods represented in the dataset.

Fine-tuning was performed by trainng the models for up to 100 epochs with early
stopping triggered if validation loss did not improve for 10 epochs. In practice, early
stopping was always triggered before reaching 100 epochs. Regularization techniques
were used to reduce risk of overfitting, including dropout, L2 regularization, learning
rate scheduling, and early stopping.

3.3 Evaluation and Explainability

Evaluation and explainability were conducted on held-out test data.
Performance evaluation. Model performance was assessed via accuracy, average

loss, and weighted F1 scores. Additionally, we introduced an ‘adjusted accuracy’ metric
that ignores misclassifications across adjacent classes, instead considering them correct.
Given the continuous character of the target variable and the steps taken in its dis-
cretization, this metric holds significant relevance. For a deeper understanding of its
importance, refer to the Discussion section.

Model explanation. To delve deeper into the model’s mechanisms, we selected
samples that were correctly classified. The samples were then ranked based on the
outputs of the models, and the 10 samples with the highest predicted probabilities from
each class were earmarked for manual exploration and further test with XAI methods.
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For the computation of SHAP values, we established a background dataset comprising
50 random images using the GradientExplainer. To visualize importance scores, we
tweaked the ‘shap.image_plot’ function to facilitate individual file exports.

Finally, we applied Gildenblat’s 2020 version of attention rollout to study the final
DeiT model. This tool allows for the visualization of attention weights, offers options
for displaying extreme weights selectively, and lets users choose a fusion method. We
set a discard ratio at 0.8, enhancing the clarity of our visualizations. For additional
details, we refer to the Supplementary Materials.

4 Results

The performance of the trained models is reported in Table 3. Both the transformer
(DeiT) and CNN (ResNet) models achieved moderate performance, with ResNet slightly
surpassing DeiT.

As shown in the confusion matrices (Fig. 2), most misclassifications are found within
adjacent classes. This is due to the discretization of the original continuous target
variable, for which two similar samples, e.g., 5.38 and 5.39, which lie just across the
threshold between the “very low” and “low” categories, are assigned to two distinct
categories. We thus adopt an ‘adjusted accuracy’ metric that accepts as correct all
classifications within adjacent classes.

Table 3: Test-set performance of trained models. Chance-level is 25%, with 62.5% for
adjusted accuracy.

Model Test accuracy Adjusted accuracy Test F1 Test loss
Deit Base 0.43 0.84 0.44 1.21
ResNet-50 0.44 0.80 0.44 1.31

4.1 ResNet50

The best model selected through hyperparameter tuning had 3 unfrozen layers, Adagrad
optimizer, learning rate of 0.01, two dropout layers with drop probability of 0.1, and L2
regularization with λ = 0.00005. The model achieved an accuracy of 43.63% on the test
set, with an adjusted accuracy of 80.38% (Table 3).

Our analysis of the true positive predictions with the highest logits uncovered
consistent patterns across different risk levels, as illustrated in Fig. 3. Specifically:

– The “very low” risk class mostly displayed rural landscapes, often devoid of built
structures but occasionally featuring single-family homes.

– “Low risk” images typically portrayed terraced houses, with the occasional sight of
duplexes or single-family homes. These images often had clear skies and cultivated
greenery.

– The “moderate" as well as the “high and very high” levels frequently presented
blocks of flats and cars, with limited greenery and sky in view.
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Fig. 2: Confusion matrices of the predictions of fully fine-tuned models. a) ResNet50. b)
Deit Base.

Our exploratory analysis using the SHapley Additive exPlanations (SHAP) method
uncovered features that were ambiguous in nature, such as expansive sky regions
and cars, which influenced model predictions across various classes. These features
displayed both positive and negative SHAP values, indicating their non-distinctive
role in determining the risk levels for depression and anxiety. Notable among these
ambiguous features are vast sky areas near the horizon, roofs, shadows beneath roofs,
shaded walls, tree canopies, and cars. Efforts to improve clarity by deducting mean
SHAP values for incorrect classifications were unsuccessful. Visual representations of
these SHAP values can be found in the Supplementary Materials.

4.2 DeiT

The best DeiT model selected through hyperparameter tuning utilized 5 unfrozen layers,
SGD optimizer, a learning rate of 0.001, dropout layers with drop probability of 0.2,
and L2 regularization with (λ = 0.0001). The model achieved 43.43% accuracy on the
test set, with adjusted accuracy of 83.55%, and was thus comparable in performance to
the ResNet50 model.

An examination of high-confidence true positive predictions revealed distinct features
for each class (see Figure 4):

– “Very low risk” images typically displayed fields and expansive sky areas without
any built structures, mirroring ResNet’s predictions.

– “Low risk” images predominantly showcased single-family homes and duplexes, a
departure from ResNet’s usual portrayal. However, like in the case of the ResNet,
these images often included curated green spaces.

– “Moderate risk” images were characterized by apartment blocks, cars positioned
farther away or absent altogether, and bicycles.

– For the “high, very high risk” category, large apartment complexes dominated the
imagery.



XDL for Depression&Anxiety Risk Exploration 9

very low risk:

low risk:

moderate risk:

high, very high risk:

Fig. 3: SVIs that were correctly identified by the fine-tuned ResNet50 as pointing to
the given level of depression and anxiety risk, per level of the target variable. Images:
Google Street View.



10 N. Khodorivsko, G. Spigler

– Notably absent were terraced houses, which were not present in the top-confidence
predictions for any class in this model.

SHAP analysis indicated that, similar to ResNet50, DeiT Base relied on sky areas
but differed in the importance of cars and bicycles (see figures in the Supplementary
Materials). These features, however, were ambiguous in their influence on classification,
as evidenced by extreme SHAP values in both directions.

The attention weight visualizations did not offer clear interpretative insights and
are detailed in the Supplementary Materials.

5 Discussion and Conclusion

This study examined the potential of deep learning (DL) models, namely DeiT and
ResNet, in predicting depression and anxiety risks using Dutch Street View Images
(SVIs). This research provides initial evidence suggesting DL models, when trained on
SVIs, might be effective in discerning neighborhood-level depression and anxiety risks.
Further studies are essential to enhance the models’ interpretability and to guide public
health strategies on the significance of specific visual environmental factors in relation
to depression and anxiety risks.

Key findings. Both the DeiT and ResNet models displayed a propensity to misclas-
sify neighboring risk categories, likely due to the continuous nature of the depression
and anxiety risk scores. Initial analyses of high-confidence, true-positive predictions
highlighted class-distinct features, such as the balance between greenery and the built
environment, a finding consistent with prior research (Helbich et al., 2019; Wang et al.,
2019).

While earlier studies centered on extracting and assessing the predictive capability
of features like greenery or sky views on mental health outcomes, the visualization
of SHAP values for our fully fine-tuned ResNet model indicates the importance of
expansive sky areas and tree canopies. Interestingly, these insights were derived directly
from images without manually specifying features of interest. Further, distinctions
such as the presence of cars versus expansive sky areas appeared critical for accurate
classifications. Other elements like roofs, shaded walls, and shadows beneath roofs,
though not highlighted in prior research, emerged as significant for accurate predictions.
Notably, roofs and their associated shadows seem as vital as the general greenery and
nearly as influential as the specific tree canopy.

These patterns hint at a potential correlation between specific visual elements in a
neighborhood and the risk of depression. This observation aligns with prior research that
linked visual elements like water, sky, and greenery with mental well-being (Helbich et
al., 2019; Wang et al., 2019). This connection is further underscored by our examination
of high-confidence true-positive predictions (see Figure 4). Here, each risk category
appeared to possess a unique balance of greenery versus built environment, mirroring
some findings from past studies (Helbich et al., 2019; Ki & Lee, 2021; Wang et al., 2019).
However, earlier investigations mostly zoomed in on greenery, sky, and water indices
without juxtaposing them against the built environment ratio. Our results suggest
variations in the types of built environments related to each risk level, pointing to a
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very low risk:

low risk:

moderate risk:

high, very high risk:

Fig. 4: Street-view images that were correctly identified by Deit Base as pointing to
the given level of depression and anxiety risk, per level of the target variable. Images:
Google Street View.
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need for more in-depth exploration in literature to understand the relationship between
built environment types, greenery, and mental health risks.

Limitations and Challenges. While both the ResNet50 and DeiT networks
performed well on the classification task, their accuracy remains far from optimal. This
may be due not only to the limited amount of data used for training, but also because
of the multitude of factors contributing to depression and anxiety risk (Köhler et al.,
2018), many of which may not be visible in SVIs. For example, many known factors are
due to genetics, diet, infections, or trauma, which would not be evident from street-view
images. At the same time, as Keralis et al. (2020) previously pointed out, there are
factors that are environmental in nature, but are not represented in the SVI, for example
perceived safety and traffic congestion.

The ’high depression and anxiety risk’ variable in this study was sourced from Dutch
Health Monitor statistics, which rely on Kessler’s questionnaire rather than Diagnostic
and Statistical Manual of Mental Disorders (DSM) criteria for their categorizations
(see Methods for more details). This was a deliberate choice, as access to clinically
diagnosed cases disaggregated by zip codes would entail handling sensitive personal
data. Given the exploratory nature of this pilot study, utilizing such data was deemed
ethically unsuitable.

The study cannot suit a purpose of causal inference about the reasons for depression
and anxiety disorders’ prevalence as it doesn’t capture temporal precedence and doesn’t
exclude any confounding variables.

Final Remarks. This study provides preliminary evidence for the utility of deep
learning to aid the monitoring of environmental factors correlated with mental health
wellness. Future work should focus on improving the efficacy of Explainable AI techniques
in this domain, and on using them to assess the importance of specific environment
features on the risk of depression and anxiety. Similar studies can suggest environmental
factors strongly correlated with depression and anxiety disorders, that could then be
further investigated with methods allowing for causal inference. We finally suggest
that applications similar to those developed in this work may be useful for real-time
monitoring of the impact of changes in the environment over time on mental health.
This could serve as a simpler alternative to the biennial Dutch Health Monitor, allowing
for more frequent assessments of neighborhood mental health risks.

Acknowledgements. We extend our gratitude to Dr. Murat Kirtay for his insightful
feedback and advice.
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6 Supplementary Materials

6.1 Supplementary Methods

Dataset Original distribution of the target variable. Figure 5 provides more
information on how the original risk of depression and anxiety variable is distributed
in the Dutch Health Monitor (Gezondheidsmonitor Volwassenen en Ouderen 2020,
GGD’en/CBS/ (2020)).

Details of the sampling procedure. The Dutch Health Monitor’s data aug-
mented with the discretized target variable was merged on neighbourhood codes with
geographical data of Basis Registratie Kadaster & Centraal Bureau voor de Statistiek
(2022). The coordinates of the polygons were converted from the European Petroleum
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Fig. 5: Distribution of the target variable. Left: the histogram of the number of neigh-
bourhoods with respect to the depression and anxiety risk scores. The histogram is split
into 5 bins in order to represent the distribution of the target variable’s classes. Right:
box plot showing the median, the quartiles and the spread of outliers of the depression
and anxiety risk values.

Survey Group’s (EPSG) coordinate system 28992 to EPSG 4326. This conversion was
done to transform the coordinates into the latitude-longitude format, which aligns with
the way SVI data is retrieved.

In order to create the input feature datasets, SVI of Google Street View (GSV) was
sampled with Google Maps API. Only images that belong to Google were sampled.
This ensures that no indoor images made by third parties are included in the dataset.
Mapillary or KartaView could have been an alternative source of images. However,
their coverage in many neighbourhoods in the Netherlands is limited to big streets and
highways, which won’t be representative of the environment in which people live and
walk. Also all their content is user-generated, which prevents from filtering images made
indoors. Therefore, GSV was chosen as the source of images. The official GSV API was
used for downloading, no scraping was used in order to comply with the terms of usage.

Based on the counts of neighbourhoods per category (Table 1), and with the
aim to get around 10,000 images, the ‘very low’ and ‘low’ levels of depression and
anxiety risk were represented with 2500 random neighbourhoods each, 1 image per
neighbourhood, totalling 5,000 images. For the other categories it was not possible to
sample one image per neighbourhood due to the limited amount of neighbourhoods.
The ‘moderate’ class was represented by 3 images per neighbourhood for 833 randomly
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selected neighbourhoods, totalling 2499 images. After a preliminary exploration the
‘very high’ category was added to the ‘high’ category, as 7 neighbourhoods were too
little to provide 2,000 images on their own without causing overfitting, and the choice
was made to merge the two categories and preserve the balance of the dataset, as both
categories represent outliers anyways. For the neighbourhoods of this fourth merged
category, 20 images per neighbourhood were sampled, totalling 2,380 images.

While sampling, 70 neighbourhoods returned no points for the first level within
the given timeframe (May-September) after 300 attempts per neighbourhood. In order
to replace these neighbourhoods, another 70 neighbourhoods of the same class were
sampled randomly. After resampling another 3 neighbourhoods returned no points
and another resampling was done for these neighbourhoods. For the second level, 26
neighbourhoods were resampled in one go, for the third level 8 neighbourhoods had to
be resampled, then 1 had to be resampled. In the fourth level all the neighbourhoods
had 20 points after the first go.

The united “High and very high” level category had the most images per neigh-
bourhood. In order to control for the places-overrepresentation bias, coordinates of all
the images per neighbourhood were visualized. Based on the visualizations, it seems
like 20 points per neighbourhood allowed for unbiased dispersion of the points for
the most neighbourhoods, as in Figure 6. Nevertheless, 16 out of 119 neighbourhoods
exhibited some level of biased sampling, with points centered around certain parts of
the neighbourhood, like for the neighbourhoods in Figure 7.

Fig. 6: Typical non-biased sampling of coordinates within a neighbourhood in the final
dataset.

Image characteristics. GSV API allows for control of the camera facing of the
given image by specifying 0, 90, 180, and 270-degree headings. However, for the datasets
curated for this study the heading was not specified, and there was only one image
collected per coordinates pair instead of 4 images (one per heading). Sampling GSVI
with these specific headings could potentially be beneficial for constructing panoramas.
However, given that pre-trained networks typically accommodate standard image shapes,
predominantly square, the feasibility of feeding panoramas into these networks is limited.
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Fig. 7: Examples of sampling that overrepresents certain parts of the neighourhoods to
a different extent.

Therefore, a decision was made to compile a set of randomly selected square images for
this study. In the meanwhile, the headings of GSVI always point in the direction of
North by default, they don’t align with the orientation of the road or any other specific
features. Consequently, the resulting images might be as random as a simple collection
of arbitrary images from the area.

It is also possible to control the field of view for GSVI download, making it bigger or
smaller. This way the images could include more of the scenery. However, bigger camera
angle results in distorted images. Ki and Lee (2021) warn about it: they had to crop
their panorama’s in order to get rid of all the distorted parts, otherwise segmentation
misclassified too much. Therefore, the datasets utilized for this study use the default
field of view, that proves to not distort the data.

Parameters of Attention Rollout. For DeiT model, Gildenblat’s adaptation
of attention rollout (2020) was used with minor adaptation. The pipeline designed by
Gildenblat not only offers visualization of attention weights, but it also allows for the
selective display of extreme weights, providing a clearer, more interpretable view of
the model’s decision-making process. It presents the possibility to choose the way of
attention heads’ fusion between mean, max, or min. The pipeline also incorporates a
discard rate to enhance the crispness and interpretability of the visualizations (Figure
8). Discard ratio was set at 0.8, which meant that 80% of the least extreme parameters
were discarded prior to visualization. VITAttentionRollout function from vit-explain
package was used to produce the visualizations, with minor adaptations in order to
ensure the fine-tuned model is used and the images are being saved as separate files.
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Original Mean, discard 0% Max, discard 90%

from Gildenblat (2020)

our own image

Fig. 8: Illustration of the Gildenblat’s pipeline (Gildenblat, 2020). First row presents the
author’s example, re-run through the pipeline for this study. Second row presents our
own image run through the pipeline in order to verify it works as intended on the kind
of images it was originally designed for. First column - the image itself. Second column -
image with average attentions vizualized, not informative to a human, according to the
author. Third column - image with discard ratio for the attention map set to 90% with
only 10% of the maximal weights visualized: the attention map becomes more crisp and
informative.
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6.2 Hyperparameter Selection Results

The best set of hyperparameters found during hyperparameter search are included in
Tables 4 and 5.

Table 4: Results of the hyperparameter tuning: DeiT family of models
Model Layers unfrozen Optimizer Learning rate Val. acc. change

in 15 epochs,
percentage points

Deit Base 1 Adam 0.005 12.87
Deit Small 5 SGD 0.001 11.96
Deit Small 3 Adagrad 0.005 11.85
Deit Tiny 5 SGD 0.001 10.64
Deit Tiny 1 SGD 0.001 10.53

Table 5: Results of the hyperparameter tuning: ResNet50
Model Layers unfrozen Optimizer Learning rate Val. acc. change

in 15 epochs,
percentage points

ResNet50 3 Adagrad 0.01 10.33
ResNet50 1 SGD 0001 8.81
ResNet50 5 RMSprop 0.001 8.41
ResNet50 5 RMSprop 0.005 7.90
ResNet50 5 Adam 0.01 7.60
ResNet50 3 RMSprop 0.01 7.60

6.3 Results: overview of the types of landscapes per class

ResNet50. Exploration of the true positive predictions with the highest logits revealed
that for top-certainty true positive predictions, the depicted landscapes in the provided
examples share analogous properties within their respective classes (Figure 3).

Specifically, in the "very low risk" class, the images that the model accurately
classified with the highest certainty predominantly showcase rural landscapes; among
the top 10 high-certainty images, 7 feature an absence of built environments, while the
remaining pictures display single-family homes. These images exhibit a lot of greenery
and sky in these images.

Within the "low risk" class, images mostly feature terraced houses with exception
for two out of 10 being duplex houses and one being a single-family home. A lot of sky
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and small cultivated greenery is visible on every image for the top-certainty correct
predictions for this class.

For both "moderate" and "high and very high" levels the buildings are mostly blocks
of flats, cars are present at the images, along with little greenery and little sky. There
are almost no cars for the "very low risk" level and always cars for the other levels.

DeiT Base. For this model the images behind the true positive predictions with
the highest logits also exhibit typical features per class, albeit the images are less
homogeneous for the "high and very high" risk level (Figure 4).

In particular, model was very good at correctly classifying the images containing
fields and vast sky areas with no built environment as belonging to the "very low risk"
class. Nine out of 10 of the top-certainty correct predictions for this category are like
that, with another one containing a farmhouse at a distance.

The correctly classified examples of the "low risk" class predominantly contain
images of small houses (single-family homes and duplexes) with cultivated greenery
(well-rounded front yards), with one exception being the entrance to a shop and another
exception being an image of two trees in front of unidentifiable type of houses, with
trees occupying almost the whole image.

The buildings in the "moderate risk" images are all blocks of flats. For this class the
model correctly and certainly classified the images that typically contained no cars in
the front (two out of 10 top-certainty predictions represent a car close to the camera),
only at a distance or not at all, and also five out of 10 top-certainty images contained
bicycles.

At nine of the 10 top-certainty images of the "high, very high risk" class a block of
flats occupied a significant portion of the image.

Curiously, typical Dutch terraced houses are not present in the top-certainty predic-
tions for this model, for any class.

6.4 SHAP visualizations

ResNet50. Figures 9 and 10 depict the regions of interest within the images that the
model assigns the highest weights to, as revealed by the SHAP values per pixel.

DeiT. Features highlighted by the visualization of the SHAP values (Figures 11, 12)
are also ambiguent for this model. Among the ambiguously highlighted features the
large areas of the sky are present again. For this model, however, the cars do not play
an important role. As ResNet, DeiT seems to assign high importance to the vast sky
areas and shadowy walls, based on the SHAP values. However, SHAP values are also
extreme at the vast areas of pavement. SHAP visualizations also show that parked
bicycles and motorbikes played an important role in classification for this model.

The visualizations also exhibit sudden groups of extreme SHAP values in the places
where no edges and no objects are present (Figure 13).
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very low risk

low risk

Fig. 9: Visualization of SHAP values for the top-6 most certain predictions of ResNet50
per class. Part 1: very low and low risk. Images without overlay: Google Street View.
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moderate risk

high, very high risk

Fig. 10: Visualization of SHAP values for the top-6 most certain predictions of ResNet50
per class. Part 2: moderate, high and very high risk. Images without overlay: Google
Street View.
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very low risk

low risk

Fig. 11: Visualization of SHAP values for the top-6 most certain predictions of DeiT
Base per class. Part 1: very low and low risk. Images without overlay: Google Street
View.
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moderate risk

high, very high risk

Fig. 12: Visualization of SHAP values for the top-6 most certain predictions of DeiT
Base per class. Part 2: moderate, high and very high risk. Images without overlay:
Google Street View.
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"very low risk" "low risk" "low risk"

(a) (b) (c)

Fig. 13: Extreme SHAP values for DeiT Base predictions in unexpected places. Notice
the blob of extreme values in the middle of the road surface in (a), on the seemingly
monotonous canopy to the right in (b) and in the bottom of the seemingly monotonous
pavement in (c). Images: Google Street View.
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6.5 Attention maps

For a similar reason the visualization of the gradient rollout for DeiT Base seems to be
uninformative to humans. The highlights are often in the middle of equally coloured
field or sky area where no edges are present. Images produced for the top-10 most
certain predictions were as uninformative as images produced for the bottom-10 least
certain predictions (Figures 14, 15).
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Fig. 14: Attention maps for the most certain predictions of DeiT Base fully fine-tuned
(with random crop). Each row represents a different class, with the columns showing
the original image, and the top-20% max, min, and mean attention weights respectively.
Images without overlay: Google Street View.
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Fig. 15: Attention maps for the least certain predictions of DeiT Base fully fine-tuned.
Each row represents a different class, with the columns showing the original image,
and the top-20% max, min, and mean attention weights respectively. Images without
overlay: Google Street View.
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