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Abstract

This study investigates the trade-off between computational efficiency and

accuracy of Izhikevich neuron models by numerically quantifying their conver-

gence to provide design guidelines in choosing the limit time steps during a

discretization procedure. This is important for bionic engineering and neuro-

robotic applications where the use of embedded computational resources requires

the introduction of optimality criteria. Specifically, the regular spiking (RS)

and intrinsically bursting (IB) Izhikevich neuron models are evaluated with step

inputs of various amplitudes. We analyze the convergence of spike sequences

generated under different discretization time steps (10µs to 10ms), with respect

to an ideal reference spike sequence approximated with a discretization time

step of 1µs. The differences between the ideal reference and the computed spike

sequences were quantified by Victor-Purpura (VPd) and van Rossum (VRd)

distances. For each distance, we found two limit discretization times (dt1 and

dt2), as a function of the applied input and thus firing rate, beyond which the

convergence is lost for each neuron model.
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1. Introduction

Neuromorphic electronic systems mimic structures and features of the biolog-

ical nervous system and form the basis for building bionic artifacts. The level

of mimicking could be either physical or only functional. That is, the neuronal

components such as neurons, synapses and their learning mechanisms could be5

implemented via the physics of the system (hard neuromorphic approach) or on

existing computer architectures (soft neuromorphic approach) [1]. Though the

former enjoys the advantage of an optimized design, the latter is much more

flexible and has a shorter design time. Further, the power consumption of the

soft approach can be minimized to some extent by choosing artificial neuron10

models with low computational requirements. A key challenge in choosing such

models lies in the trade-off between computational efficiency and accuracy of the

implementation. This is especially important in bioengineering and robotic ap-

plications where the use of embedded systems limits the amount of computation

that can be performed in real-time.15

In recent years the Izhikevich spiking neuron model has been commonly used

to reproduce the dynamics of different neuron types [2, 3]. This artificial neuron

model is particularly suitable for real time implementation using a microprocessor

or FPGA due to its good trade-off between low computational requirements and

biological plausiblility [4, 1, 5, 6]. Still, like most models of artificial neurons,20

it is sensitive to the discretization time step dt used, especially when the Euler

method is adopted to solve the differential equations describing the model. Figure

1 shows an example of the different degrees of convergence of the Izhikevich

neuron model when simulated with different discretization time steps dt and

different input values. As an example, it can be intuitively observed that a25

discretization time step of dt = 1ms results in a significant variation from the

ideal spike train, though the dynamics are partially preserved. However, higher

discretization time steps are found to affect the dynamics of the model in a

more drastic way that then impedes its use (see for example dt = 5ms in 1).

Nonetheless, while larger discretization steps inevitably lead to a degree of error30

in the simulation of the model dynamics, they also result in lower computational

requirements, as fewer updates per second are needed. The choice of an optimal

time step for the discretization process is thus the result of a trade-off between

the accuracy of the generated spike trains and the computational load.

Previous studies have already investigated the numerical stability and accu-35

racy of various neuron models [7, 8, 9, 10]. Of particular interest are Long et al.
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Figure 1: The membrane potential variable v is plotted within a window of T = 100ms to
show the effect of the discretization time step (dt) on the converge of a regular spiking (RS;
top) and intrinsically bursting (IB; bottom) Izhikevich spiking neuron model. The left column
shows simulations with an input value I

Cr
of 10mV/ms, while the right one used an input

of 20mV/ms. Three different values of the time step are used (0.1ms, 1ms and 5ms), along
with an ideal reference trace computed using dt = 1µs. Note that the value of the membrane
potential v can exceed the threshold of 30mV if the single update that leads to its crossing is
very large, for example when using large time steps.

[8] and Skocik and Long [10]. Long and colleagues addressed the convergence

issues of various spiking neuron models including the Izhikevich neuron model by

quantifying convergence and accuracy using the L2 norm. Skocik and Long then

later compared the computational requirements of three different artificial neuron40

models, Hodgkin-Huxley, Izhikevich and leaky Integrate-and-Fire for attaining

an accurate numerical solution of their differential equations using different

methods (Euler, 4th order Runge-Kutta and exponential Euler). Contrary to the

present study, however, the authors measured the errors in the resulting firing

frequency and deviation from the ideal membrane voltage dynamics, rather than45

investigating potential trade-offs of slight decreases in the accuracy of timing of
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the spike trains in exchange for gains in computational efficiency, as instead we

propose here.

In this paper, we analyze the convergence of the Izhikevich neuron model

using the Victor-Purpura (VPd) and van Rossum (VRd) distances between spike50

trains generated using multiple time steps and the ideal reference spike train.

To further show the generality of the proposed approach, we report results for

two sets of parameters of the Izhikevich neuron model, producing regular spiking

(RS) and intrinsically bursting (IB) dynamics.

2. Materials and Methods55

2.1. Izhikevich Spiking Neuron Model

Several models have been proposed to simulate the spiking dynamics of

biological neurons. The first and most famous is the Hodgkin-Huxley (HH)

model, that was proposed in 1952 [11] and models the role of ionic mechanisms

on the genesis and propagation of action potentials. The model has been studied60

extensively using analytical and computational approaches [12].

A line of this research involved a qualitative analysis of the mathematical

structure of the HH model. The reduction of the mathematical complexity

of the HH model allowed a phase-space geometrical analysis of its dynamical

properties. In this respect, it is worthwhile to cite the seminal paper of Rinzel65

and Ermentrout [13]. For a historical perspective, see [12] and [14] (in particular

the Introduction).

Some years later, Izhikevich further developed the geometrical analysis of

neuronal excitability [15]. The Izhikevich models are characterized by a high

biological realism in the generation of several different neural dynamics (such70

as that of cortical neurons and peripheral receptors), depending on the specific

parameter settings and minor variations [2]. Due to this advantage, these models

are often used in practical applications where the accurate temporal structure

of the generated spike trains is required [6]. The Izhikevich model consists of a

system of two differential equations75

dv

dt
= Av2 +Bv + C − u+

I

Cr
(1)

du

dt
= a(bv − u) (2)
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together with an update rule that is applied when the value of the membrane

potential v crosses a pre-defined threshold vth

if v >= vth, then v = c, u = u+ d (3)

The values A = 0.04/(ms · mV ), B = 5/ms and C = 140mV/ms are

the standard constants of the model; the threshold is set to vth = 30mV ; I
Cr

represents the input variable (mV/ms). The variable u, referred to as adaptation

variable or recovery variable, accounts for the negative feedback on the membrane

potential (inactivation of sodium currents and activation of potassium currents).80

The model is very sensitive to the parameters (a,b,c,d), tuning which can produce

different types of neural dynamics [2].

The ideal continuous-time spike trains from the Izhikevich neuron model were

computed for a set of input values by integrating the model equations using the

Euler method with a small discretization step (dt = 1µs), for a total duration85

of 7000ms. A number of spike trains were then computed using 100 different

discretization time steps dt varying logarithmically between 10µs and 10ms.

Two sets of parameters were used to simulate different neuron types, cor-

responding to different regimes of dynamics, using reference values for the

parameters [2]. Regular spiking (RS) neurons were simulated using parameters90

a = 0.02, b = 0.2ms−1, c = −65mV , d = 8mV . Intrinsically bursting (IB)

neurons were simulated using parameters a = 0.02, b = 0.2ms−1, c = −55mV ,

d = 4mV . The initial values of the variables were set to v = c and u = bv, with

the corresponding parameter values for each neuron type.

The simulations for each neuron type and discretization time step were run95

with 21 different inputs, taking all the integer values between 5mV/ms and

25mV/ms.

2.2. Spike Train Distance Metrics

In this study, the deviation in the temporal structure of the spike sequences

with respect to an ideal reference spike train was estimated using two different100

spike distances, the Victor-Purpura distance VPd(q) [16, 17] and the van Rossum

distance VRd(τ) [18]. The Victor-Purpura distance is non-Euclidean and event-

based, and is computed as the minimum cost required to turn one spike sequence

into another using a combination of the following elementary operations:

• Insertion of a spike (cost= 1)105
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• Removal of a spike (cost= 1)

• Temporal shift of a spike by an amount of time δt (cost= q |δt|)

where q represents the relative cost to move a spike and has unit of s−1.

Setting q = 0 means that moving any spike is free of cost. In this case, the

distance between two spike trains reduces to the difference in the number of110

spikes. That is, for q = 0, the distance is insensitive to the spike position in

time. Instead, higher values of q increasingly penalize shift operations, ultimately

making it more expensive than simply removing a spike and inserting it in the

correct place (constant cost of 2). The Victor-Purpura distance has been also

previously used in the specific context of bionic engineering, for example in115

bionic touch applications [5, 6].

The van Rossum distance algorithm instead converts the spike trains into

continuous functions by convolving each spike train with an exponential kernel

(with time constant τ). Then, the distance is computed as an Euclidean integral

distance between the two convolved spike trains. In VRd, the τ parameter has120

a similar role as 1/q in VPd. Specifically, low values of τ with respect to the

inter spike interval make the distance sensitive to the fine temporal differences

between the spike trains, while high values of τ make it mostly sensitive to the

difference in their firing rates.

Finally, a useful measure to characterize the temporal dynamics of spike125

trains, especially on constant input stimulation, is the average inter-spike interval

(ISI), which we compute as

ISI =
1

N − 1

N−1∑
i=1

(ti+1 − ti) (4)

where N is the number of spikes generated and ti are the spike times, sorted

in ascending order.

2.3. Identification of Limit Discretization Time Steps130

Increasing the discretization time step dt leads to progressively degraded spike

trains, due to the increased coarseness of the approximation of the dynamics

of the artificial neurons. Two main types of changes can be identified, one due

to the progressive build-up of errors in the precise time of each spike, which

however preserves the overall structure of the spike train, and another in which135

the structure of the spike train is completely disrupted, due to too large errors

in numeric integration of the model differential equations.
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Two different limit discretization time steps can then be defined, one capturing

a degree of trade-off between the amount of computation required to simulate

the model neurons and the error in the time of each spike (henceforth referred140

to as dt1), and another reflecting a limit above which the generated spike trains

are no longer representative of the ideal, continous-time dynamics of the models

(henceforth referred to as dt2).

The computation of the two limits proposed requires a measure of the quality

and correctness of the spike trains produced using different discretization time145

steps dt and input values. To do so we proceed as follows. First, for each

neuron type and input value we compute a distance matrix using either the

Victor-Purpura or van Rossum distances as metric, whose elements correspond

to the distance between the reference ideal spike train and spike trains generated

with all the combination of values of dt (rows) and distance-specific parameters150

(columns; i.e., q parameters for VPd and τ parameters for VRd). Estimating

the distances for multiple values of the parameters is indeed useful, as different

parameter values reflect a different weight on the temporal precision of the spike

trains, whose exact trade-off may be application-specific. 50 values varying

logarithmically between 0.001/ms and 0.1/ms were used for the q parameters,155

while the τ parameters were set as τ = 1
q . Thus, for an input of given amplitude,

two distance matrices of size 100× 50 were computed, reflecting different time

steps along their rows and different parameter values along their columns.

Then, we use the distance matrices to compute an estimate of the lower and

upper limits of the discretization time step dt1 and dt2 separately for each value160

of the distance parameters, using an adaptation of the CUSUM algorithm [19].

CUSUM is a technique that is typically used to detect small cumulative changes

in the mean of a signal. Here, we use it to detect significant increases in the spike

distances due to increased discretization time steps. Specifically, we compute

the upper cumulative sum Ui by incrementally adding samples x(dti), computed165

as explained in the next paragraphs

Ui =

0 if i = 1

max(0, Ui−1 + x(dti)−m− 1
2nσ) if i > 1

(5)

where m and σ are the target mean and standard deviation of the signal, and

n is a mean shift argument that represents the number of standard deviations

from the target mean required for change detection. A change point is computed
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as the first index i such that Ui > cσ, where c is the change detection threshold,170

expressed in target standard deviations of the signal.

The first limit dt1 is then computed by applying the CUSUM technique to

the columns of the distance matrices (i.e., the distances from the reference ideal

spike trains as a function of the discretization time step, for each parameter

value) to detect a breaking point at which the distance exceeds a target standard175

deviation of 1 from the ideal target mean of 0 (zero distance, that is, a perfect

representation of the spike train with respect to the reference spike train). The

set of CUSUM parameters can be tuned to produce more or less conservative

estimates of the limit time step. The parameters (c, n) used in this paper are

(10, 10) and (0.2, 0.2) for VPd and VRd on the RS neuron, respectively, and180

twice their value (20, 20) and (0.4, 0.4) on the IB neuron.

The second limit dt2 is computed in a similar way, but rather than using the

columns of the distance matrices directly, the absolute value of the change in the

distance values with increasing dt is used. CUSUM is then applied similarly as

before, with the difference that the target mean value is estimated as the average185

of the change in distance values for dt lower than 0.1ms, rather than using the

ideal null value. This was done to improve the stability of the system. The

parameters used for the detection of the second limit are (40, 40) and (1.5, 1.5)

for VPd and VRd on the RS neuron, respectively, and (30, 30) and (0.7, 0.7) for

the IB neuron.190

Specific values of dt1 and dt2 (for each distance parameter value) were

computed for all the input amplitudes used (5mV/ms to 25mV/ms), for both

neuron types (RS and IB), and for both distance metrics (VPd and VRd).

3. Results

The spike trains computed as a function of all the different discretization195

time steps are shown in Figure 2 (left) as raster plots. The first row shows the

results for the RS neuron model, while the bottom row shows the results for the

IB neuron model. Figure 2 (middle-right) shows the distance matrices computed

using the Victor-Purpura (VPd) and van Rossum (VRd) distances. The distance

matrices report the value of the distance between the reference ideal spike train200

and spike trains computed using different discretization time steps (rows), and

a range of parameters for the distance functions (columns, corresponding to q

values for VPd and τ values for VRd). The upper and lower limit time steps are

marked with thick white lines as a function of the distance parameters, showing

8



how different parameters that prioritize different aspects of the approximated205

spike trains can have a significant effect on the resulting lower limit.

VRd limit 1

VPd limit 1

VRd limit 2

VPd limit 2

IB
R

S

0 100 200 300 400 500

time (ms)

0.01

0.1

1

10
dt

 (
m

s)

0.001 0.01 0.1

q (1/ms)

100 200 300 400 500 600 700 800

1000 100 10

0.001 0.01 0.1

q (1/ms)
1000 100 10

tau (ms)

2 4 6 8 10 12 14 16 18

tau (ms)

50 100 150 200 250 300 350 1 2 3 4 5 6 7 8 9 10

VPd                                 VRd

0.01

0.1

1

10

dt
 (

m
s)

0 100 200 300 400 500

time (ms)

0.01

0.1

1

10

dt
 (

m
s)

0.01

0.1

1

10

dt
 (

m
s)

0.01

0.1

1

10

dt
 (

m
s)

0.01

0.1

1

10

dt
 (

m
s)

Figure 2: The raster plots on the left show the firing activity of a regular spiking (RS; top) and
intrinsically bursting (IB; bottom) Izhikevich neuron model computed using a fixed input of
20mV/ms and different discretization time steps (dt). Limit discretization time steps dt1 and
dt2 are shown in overlay, computed using both VPd and VRd distances and a fixed parameter
value of q = 0.001/ms for VPd and τ = 1000ms for VRd. The other panels at the right of
the raster plots show the distance matrices computed using the Victor-Purpura (VPd; middle
column) and van Rossum (VRd; right column) distances for every combination of discretization
time step (dt) and parameter value (q for VPd, and τ = 1

q
for VRd). The computed limit

discretization time steps dt1 and dt2 are shown in overlay as white lines, as a function of the
parameters of the distance functions.

The two limit time steps implicitly define three regions over the range of time

steps, exhibiting different dynamics. For time steps lower than dt1, the generated

spike trains closely resemble the target, ideal spike train. For higher time steps,

the spike trains progressively degrade in quality, until they completely lose their210

structure when approaching dt2.

The dynamics of the generated spike trains in the three regions can be

understood by inspection of the u-v space, as is shown in Figure 3. Specifically,

increasing the discretization time step introduces small errors in the dynamics

of the system due to “overshooting” of the membrane potential v, that lead to215

irregular spikes and temporal errors that build-up over time. Ultimately, time

steps higher than the upper limit dt2 result in a complete loss of the structure

of the spike trains.
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Figure 3: The trace of the model variables is shown in the u−v phase space for a regular spiking
(RS; top) and intrinsically bursting (IB; bottom) Izhikevich neuron model. The dynamics were
computed using a fixed input of 25mV/ms and three values of the discretization time step
(0.1ms, 1ms, 5ms), along with an ideal reference trace computed using dt = 1µs. Note that
as in Fig. 1, the value of the membrane potential v can exceed the threshold of 30mV if the
single update that leads to its crossing is very large, for example when using large time steps.

We further explored the computed limit discretization time steps over a full

range of input amplitudes, which produce spike trains with different structure220

(Figures 4 and 5). In particular, increasing the input amplitude increases the

firing rate of the neurons, thereby reducing the average inter-spike interval (ISI).

The behaviour of the lower limit dt1 was found to be highly consistent for

both neuron types and is characterised by a clear decrease with increasing input

values. As increased input values are observed to produce decreasing inter-spike225

intervals (ISI; middle column of Fig. 6), we further analysed the relationship

between the limit dt1 and the ISI directly (Fig. 6, third column), finding a linear

relation between the two variables in the range considered.

It is interesting to observe that while the upper limit dt2 was found to be of

the order of 3ms, with low variation depending on the input, in the RS neuron,230

its behaviour as a function of the input seems to be less obvious in the IB neuron,

as shown in Fig. 6 (first column). This is however not surprising as inspection

of the raster plots of the IB neuron shows a generally smoother break-down in

the structure of the generated spike trains with increased time steps, contrary

to the clear and disruptive effect on the RS neuron (see Figures 2, 4 and 5).235

We then finally extended the analysis of Fig. 6, which is based on a single

value of q (for VPd) and τ (VRd), to explore the stability of the strength of the
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Figure 4: Full set of raster plots for the regular spiking (RS) Izhikevich artificial neuron used
in the main paper, for a range of input values from 5mV/ms to 24mV/ms.

linear relation between the limit dt1 and the ISI while varying the parameters

of the distance function. The results are reported in Fig. 7. We observe that

for low values of q (and corresponding high values of τ = 1
q ) the strength of240

the linear relation is stable and approximately constant; higher values of the

parameters, however, produce a sharp change in regime until finally dt1 becomes

almost independent from the ISI.

4. Discussion and conclusion

The application in bionic engineering and neuro-robotics of artificial neuron245

models that use Euler integration requires the explicit choice of a discretization

time step to achieve a trade-off between the amount of computation required

for the simulation of the neurons and the fidelity of their generated behaviour

with respect to an ideal, continuous-time solution. The Izhikevich neuron model

has been previously identified as a good candidate for this scope, due to its250
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Figure 5: Full set of raster plots for the intrinsically bursting (IB) Izhikevich artificial neuron
used in the main paper, for a range of input values from 5mV/ms to 24mV/ms.

capacity to reproduce a large variety of dynamics of biological neurons while

only requiring 13 floating point operations per update [3, 1]. The total number

of FLOPS (floating-point operations per second) required to simulate a single

neuron in real-time using a discretization time step dt is thus 13
dt , or alternatively

the total number of artificial neurons that can be simulated on a computer255

system capable of P (measured in FLOPS) is N = P ·dt
13 . Thus, the use of larger

time steps allows for the simulation of a significantly larger number of artificial

neurons in real-time, on the same platform. Note that this relation on dt is valid

for any model of artificial neurons, with different constants at the denominator.

In this work, we explored the effect of the discretization time step on the260

quality of the spike trains generated using the Izhikevich neuron model under

regular spiking (RS) and intrinsically bursting (IB) dynamics, evaluated with

step inputs of various amplitudes. The degree of convergence of the models

was measured using the distance between the spike trains produced with an
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Figure 6: The figure shows the limit discretization time steps computed using the Victor-
Purpura (VPd; red) and van Rossum (VRd; green) distances as a function of the input value
used (left column) and of the average inter-spike interval (ISI; right column), using a fixed
parameter value of q = 0.001ms−1, τ = 1

q
= 1000ms. The right column further shows a linear

fitting of the data (y = ax+ b) to compute the slope of change in the value of the limit dt as a
function of the ISI to different inputs. The coefficient of the fitted lines for the RS neuron
are 0.035 for dt1 and −0.01 for dt2, regardless of the distance metric used, while for the IB
neuron are 0.051 and 0.05 for dt1, Victor-Purpura and van Rossum, respectively, and 0.035
for dt2 for both distances. The middle column shows the relation between the input value
and the average inter-spike interval. Results are reported for a regular spiking (RS; top) and
intrinsically bursting (IB) Izhikevich neuron model.

ideal dt = 1µs, approximating a continuous-time exact solution of the system,265

and spike trains produced with increasing values of dt. Two distance metrics

were compared in parallel, Victor-Purpura and van Rossum, so to evaluate the

generality of the proposed approach.

Specifically, we found that two limits can be defined, a lower limit dt1

reflecting the build-up of errors in the timing of the individual generated spikes,270

which however still retain the large-scale structure of the spike train, and an

upper limit dt2 above which numeric integration fails and any input-specific

structure is lost.

The dt1 limit was found to have a strong dependency on the average ISI on

both neuron types, and to increase with increasing ISI values. In particular, it275

was found that spike trains with high ISI, that is low average firing rate, could

be accurately simulated using large time steps (dt ∈ [1ms, 2ms]), though spike

trains with low ISI (high average firing rate), which are more common in practical
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Figure 7: Investigation of the effect of the distance parameters (q and τ) on the estimated
slope of the linear relation between the dt1 limit and the average ISI (Fig. 6, right column).
The dt1 limit was found to depend linearly on the average ISI for low values of the q parameter
(and equivalently, for high values of the τ parameter), while it was found to be independent
from it for higher values.

applications, were found to require smaller time steps (dt ∈ [0.1ms, 1ms]). It

is thus important to stress that the exact value of the limit discretization time280

step depends on the expected magnitude of the inputs, which is reflected in the

firing rate and ISI of the neuron model. The relation between the dt1 limit and

the average ISI was found to be approximately linear within the range of input

values considered, that introduces a sort of Nyquist-like criterion suggesting

a lower-limit discretization as a function of the ISI and the desired temporal285

precision (which is reflected in the choice of q or τ parameters and in the CUSUM

coefficients). For example, using the present CUSUM parameters and the the

values of q and τ used in Fig. 2 and Fig. 6 (q = 0.001/ms, τ = 1000ms), a
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Nyquist-like criterion can be formulated suggesting a sampling frequency around
30
ISI for RS and 20

ISI for IB.290

The dt2 limit was found to be well defined in the regular spiking model,

and decreasing with the average ISI. However, its estimate was less clear in the

intrinsically bursting model, and not always clear even from visual inspection

of the spike trains (see Figures 2, 4 and 5). Nonetheless, it was found that dt2

was always larger than 2 − 3ms, which can thus be used as an approximate295

upper bound for the discretization time step in any application using Izhikevich

neurons.

Finally, investigation of the effect of the parameters of the distance metrics (q

and τ) on the slope of the linear relation between the dt1 limit and the average

ISI found that the strength of the relation is stable and approximately constant300

for a range of values (small q, high τ), but disappears for others (zero slope,

fairly constant dt1 regardless of the average ISI; high q, small τ). This is easily

explained by the fact that high values of q (low values of τ) enforce stricter

requirements on the exact timing of the individual spikes, and thus require small

values of dt for an accurate representation of the spike train.305

The actual value of the dt1 limit thus depends on the degree of accuracy that

specific applications may require, and that can be incorporated in the choice

of the parameters of the distance metrics used and in the parameters of the

CUSUM algorithm, allowing for more or less strict estimates of the limit.

Indeed, contrary to previous work [10] that tried to identify a single limit310

discretization time step that guaranteed almost exact dynamics, here we were

interested in finding broad ranges of time steps to allow for a trade-off between

the temporal precision of the produced spike trains and the computational

requirements necessary to produce them. Specifically, we determined three

different regimes as a function of the time step dt, 1) guaranteeing high accuracy of315

the generated spike trains (dt < dt1), 2) trading off a lower accuracy in exchange

for lower computational requirements (dt1 < dt < dt2), and 3) ultimately

breaking up the structure of the desired spike trains (dt > dt2).

The algorithms we presented to compute the dt1 and dt2 limits can be further

extended to other neuron models that were not used here (e.g., Integrate & Fire,320

. . . ) and other neuron types (e.g., Chattering CH, . . . ). The results were also

found to be robust regardless the distance metrics used, Victor-Purpura and van

Rossum, and fairly consistent between them. It is thus likely that other metrics

may be used for specific applications, depending on their individual requirements

[20], for example where sensitivity to bursts and silent periods is desired [21].325
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In conclusion, we have analyzed the errors introduced by using large dis-

cretization time steps to simulate Izhikevich artificial neurons using the Euler

integration method. In particular, we presented a novel method to estimate two

discretization limits and we discussed how they can be used to choose an optimal

value of time step to reflect a trade-off between the amount of computation330

required and the quality of the simulated spike trains.
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