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Overgeneralization and “Fooling”

• Overgeneralization: classifying inputs not belonging to any training class

as one of the training classes

• Open set recognition: training on a limited number of classes, testing on

a larger number of classes

• Fooling [Nguyen et al., 2015]: inputs that are unrecognizable to humans

get classified as one of the training classes with high confidence
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Previous Work

• Positive vs negative training samples

• Threshold on the outputs of a classifier

• Confidence score based on k-Nearest-Neighbor

• Open set recognition: 1-vs-Set Machine, Weibull-SVM, OpenMax

• Special case ‘1-class recognition’: 1-class SVM.

• COOL (Competitive Overcomplete Output Layer: each output unit is

replaced with ω ones competing with oneanother via a softmax

activation. Confidence score = product of the output of all ω units for

the same class.

Image from [Kardan and Stanley, 2017]
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Proposed Solution



Proposed Solution – Motivation

• Identify data points that belong to the data distribution p(x)

• Problem: p(x) is hard to model!

• Solution: it may suffice to identify points that are close to the local

maxima of the data distribution

• [Bengio et al., 2013] and [Alain and Bengio, 2014] showed that

denosing and contractive autoencoders implicitly learn aspects of the

underlying data distribution. Specifically, their reconstruction error

approximates the gradient of the log-density of the data

∂ log p(x)

∂x
∝ r(x)− x

for small corruption noise σ → 0, r(x) = Dec(Enc(x)).
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Proposed Solution – Confidence Score

• Critical points of p(x) ⇔ small gradient of the log-density ⇔ small

reconstruction error

Why

Those are points that the network can reconstruct well, and that it has

thus hopefully experienced during training, or has managed to

generalize to in a good way.

• We can use this insight to design a confidence score for the data points.

For example,

c̃(x) = exp
(
− α
D
‖r(x)− x‖2

)
x ∈ RD , α controls the sensitivity of the function to outliers
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Proposed Solution – Local Maxima of p(x)

Problem

This approach cannot discriminate between local minima, maxima or

saddle points, and may thus assign a high confidence score to points

not belonging to the target distribution.

• Solution: approximate the Hessian of the log-density from the Jacobian

of the reconstruction function [Alain and Bengio, 2014]

∂2 log p(x)

∂x2
∝ ∂r(x)

∂x
− I

• Then scale the computed confidence by a function Γ(x) that favours

small or negative curvature of the log-density. Here we propose

Γ(x) =

{
1 if γ(x) ≤ 0

exp(−βγ(x)) if γ(x) > 0

γ(x) =
1

D

∑
i

(
∂ri (x)

∂xi
− 1

)
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Proposed Solution

• The confidence score can be then modified as

c̃(x) = exp
(
− α
D
‖r(x)− x‖2

)
Γ(x)

• The score is high for small reconstruction errors, that is for points within

regions of small gradient of the log-density of the data. Γ(x) further

selects regions with small or negative curvature, restricting high values

of c̃(x) only near its maxima

• A classifier can be modified by scaling its predicted outputs by c̃(x)

ỹ = c̃(x)y
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Results



Results – 2D Toy Problem

• 3 target classes (rings with thickness = 0.1, rinner = 0.6,

centers = {(−1, 1), (1, 1), (1,−1)})
• Predictions of a classifier y over the whole input space, along with

confidence scores and scaled outputs ỹ
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Results – Fooling 1

• Fooling Generator Network (FGN): input samples produced from a

single feedforward layer with sigmoid activation and random (fixed)

input (e.g., for MNIST, single layer with 784 inputs and 784 outputs)

• Fooling is attempted by gradient descent on the parameters of the FGN

to minimize the cross-entropy between the output of the network to be

fooled and the desired target output class

• Network architectures for all the results:

• Baseline:

{Conv2D(1→ 32, 5× 5), Max(2× 2), ReLU, Conv2D(32→ 64, 5×
5), Max(2×2), ReLU, FC(64→ 400), ReLU, FC(400→ 10), softmax}

• COOL: same, with 10× ω outputs

• dAE (ours): same, with a symmetric decoder attached to the last hidden

layer
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Results – Fooling 2

Table 1: MNIST

Model Accuracy Fooling Rate (Avg Steps)

0% 90% 99% 90% 99%

CNN 99.35% 99.23% 99% 100% (63.5) 99% (187.1)

COOL 99.33% 98.1% 93.54% 34.5% (238.8) 4.5% (313.4)

dAE sym 98.98% 98.11% 96.8% 0% (-) 0% (-)

dAE asym 99.14% 98.41% 0% (-)

Table 2: Fashion-MNIST

Model Accuracy Fooling Rate (Avg Steps)

0% 90% 99% 90% 99%

CNN 91.65% 90.91% 89.27% 100% (113.0) 30.5% (902.0)

COOL 91.23% 87% 65.3% 0% (-) 0% (-)

dAE sym 91.59% 77.8% 64.87% 0% (-) 0% (-)
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Results – Open Set Recognition

Threshold at 99% (MNIST) and 90% (Fashion-MNIST).

num training classes ∈ {1, 2, . . . , 10}.
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Results – 1-Class Recognition
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Conclusions



Conclusions and Future Work

• Overgeneralization is a problem in discriminative models in machine

learning

• We proposed to use information about the data distribution implicitly

learnt by denoising autoencoders to compute a confidence score for

novel inputs

• Applications in novelty and outliers detection

• Potential issues:

• The dAE may not manage to learn a model of the data

• Clutter and images with multiple objects

• Future work:

• Recurrent attention model to deal with clutter (i.e., only reconstruct part

of the input)

• Replacing the dAE with an EBGAN discriminator
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Supplementary Slides – Clutter 1

• SVHN dataset for cluttered digit recognition

• Reconstructing parts of an image or individual objects may be easier

than modelling all possible compositions of objects.

• Reconstruction error low iff all image reconstructed → only within an

attention mask

‖a (r(x)− x) ‖2
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Supplementary Slides – Clutter 2

• Using a recurrent network to produce the attention mask yields an

interesting result: the gradient of the log-density of the whole image is

the sum of the gradients of the log-density for the relevant objects

within, so the confidence score proposed here can be simply

approximated with the sum of the masked reconstruction errors (over all

objects / features in the input, minus clutter). For images composed by

independent objects, the likelihood of the image can be approximated

by the product of the likelihood of the objects

p(xwhole) =
∏
i

p(xobjecti )

∂ log p(xwhole)

∂x
=
∑
i

∂ log p(xobjecti )

∂x
≈
∑
i

ai (r(x)− x)

• MSc student project?
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Supplementary Slides – Open Set Recognition

• Fashion-MNIST, open set recognition, with classification threshold

τ = 99%
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