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Overgeneralization and “Fooling”

e Overgeneralization: classifying inputs not belonging to any training class

as one of the training classes

e Open set recognition: training on a limited number of classes, testing on
a larger number of classes

e Fooling [Nguyen et al., 2015]: inputs that are unrecognizable to humans
get classified as one of the training classes with high confidence
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Positive vs negative training samples

Threshold on the outputs of a classifier

Confidence score based on k-Nearest-Neighbor

Open set recognition: 1-vs-Set Machine, Weibull-SVM, OpenMax

e Special case ‘1-class recognition’: 1-class SVM.

COOL (Competitive Overcomplete Output Layer: each output unit is
replaced with w ones competing with oneanother via a softmax
activation. Confidence score = product of the output of all w units for

the same class.

(a) Conventional (b) COOL (c) COOL
output layer during training during testing
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Image from [Kardan and Stanley, 2017]



Proposed Solution



Proposed Solution — Motivation

e Identify data points that belong to the data distribution p(x)
e Problem: p(x) is hard to model!

e Solution: it may suffice to identify points that are close to the local
maxima of the data distribution

e [Bengio et al., 2013] and [Alain and Bengio, 2014] showed that
denosing and contractive autoencoders implicitly learn aspects of the
underlying data distribution. Specifically, their reconstruction error
approximates the gradient of the log-density of the data

9 log p(x)
ox

for small corruption noise o — 0, r(x) = Dec(Enc(x)).

o r(x) — x
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Proposed Solution — Confidence Score

e Critical points of p(x) < small gradient of the log-density < small
reconstruction error

Why
Those are points that the network can reconstruct well, and that it has

thus hopefully experienced during training, or has managed to

generalize to in a good way.

e We can use this insight to design a confidence score for the data points.

For example,

&(x) = exp (— 1) = xll2)

x € RP, « controls the sensitivity of the function to outliers
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Proposed Solution — Local Maxima of p(x)

Problem

This approach cannot discriminate between local minima, maxima or
saddle points, and may thus assign a high confidence score to points
not belonging to the target distribution.

e Solution: approximate the Hessian of the log-density from the Jacobian
of the reconstruction function [Alain and Bengio, 2014]

0 logp(x)  Ir(x)
a2  ox
e Then scale the computed confidence by a function '(x) that favours
small or negative curvature of the log-density. Here we propose
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Proposed Solution

e The confidence score can be then modified as

&(x) = exp (=35 [Ir(x) = xll2) (%)

e The score is high for small reconstruction errors, that is for points within
regions of small gradient of the log-density of the data. ['(x) further
selects regions with small or negative curvature, restricting high values
of &(x) only near its maxima

e A classifier can be modified by scaling its predicted outputs by &(x)

¥ = e(x)y
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Results




Results — 2D Toy Problem

e 3 target classes (rings with thickness = 0.1, ripper = 0.6,
centers = {(717 1)7 (13 1)7 (17 71)})

e Predictions of a classifier y over the whole input space, along with
confidence scores and scaled outputs y

Target Distributions
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Results — Fooling 1

e Fooling Generator Network (FGN): input samples produced from a
single feedforward layer with sigmoid activation and random (fixed)
input (e.g., for MNIST, single layer with 784 inputs and 784 outputs)

e Fooling is attempted by gradient descent on the parameters of the FGN
to minimize the cross-entropy between the output of the network to be
fooled and the desired target output class

o Network architectures for all the results:
e Baseline
{Conv2D(1 — 32,5 x 5), Max(2 x 2), ReLU, Conv2D(32 — 64,5 x
5), Max(2x2), ReLU, FC(64 — 400), ReLU, FC(400 — 10), softmax}
e COOL: same, with 10 X w outputs
e dAE (ours): same, with a symmetric decoder attached to the last hidden

layer
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Results — Fooling 2

Table 1: MNIST

Fooling Rate (Avg Steps)

Model Accuracy
0% 90% 99% 90% 99%
CNN 99.35%  99.23% 99% 100% (63.5) 99% (187.1)
CcooL 99.33% 98.1% 93.54% | 34.5% (238.8) 4.5% (313.4)
dAE sym | 98.98% 98.11%  96.8% 0% (-) 0% (-)
dAE asym | 99.14%  98.41% 0% (-)
Table 2: Fashion-MNIST
Model Accuracy Fooling Rate (Avg Steps)
0% 90% 99% 90% 99%
CNN 91.65% 90.91% 89.27% | 100% (113.0) 30.5% (902.0)
COOL 91.23% 87% 65.3% 0% (-) 0% (-)
dAE sym | 91.59%  77.8%  64.87% 0% (-) 0% (-)
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Results — Open Set Recognition

Threshold at 99% (MNIST) and 90% (Fashion-MNIST).
num_training_classes € {1,2,...,10}.

MNIST Fashion-MNIST
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Results — 1-Class Recognition
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Conclusions




Conclusions and Future Work

e Overgeneralization is a problem in discriminative models in machine
learning

e We proposed to use information about the data distribution implicitly
learnt by denoising autoencoders to compute a confidence score for
novel inputs

e Applications in novelty and outliers detection

e Potential issues:

e The dAE may not manage to learn a model of the data
e Clutter and images with multiple objects

e Future work:

e Recurrent attention model to deal with clutter (i.e., only reconstruct part
of the input)
e Replacing the dAE with an EBGAN discriminator
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Supplementary Slides — Clutter 1

e SVHN dataset for cluttered digit recognition

e Reconstructing parts of an image or individual objects may be easier
than modelling all possible compositions of objects.

o Reconstruction—errorfow-iff-all-imagereconstructed — only within an

attention mask

la(r(x) =x) |2
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Supplementary Slides — Clutter 2

e Using a recurrent network to produce the attention mask yields an
interesting result: the gradient of the log-density of the whole image is
the sum of the gradients of the log-density for the relevant objects
within, so the confidence score proposed here can be simply
approximated with the sum of the masked reconstruction errors (over all
objects / features in the input, minus clutter). For images composed by
independent objects, the likelihood of the image can be approximated
by the product of the likelihood of the objects
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Supplementary Slides — Open Set Recognition

e Fashion-MNIST, open set recognition, with classification threshold
7 =99%
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